cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226157 a(n) = BS2(n) * W(n) where BS2 = sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{2}(n, k) and S_{2}(n, k) are the Stirling-Frobenius subset numbers A039755(n, k). W(n) = product{p primes <= n+1 such that p divides n+1 or p-1 divides n} = A225481(n).

Original entry on oeis.org

1, 1, -2, -2, 14, 33, -62, -132, 254, 14585, -5110, -313266, 2828954, 38669001, -573370, -404801672, 237036478, 117650567067, -11499383114, -24255028327410, 1281647882998, 8203584532193105, -3584085584926, -418397193140056356, 3965530936622474, 405233976502715850633
Offset: 0

Views

Author

Peter Luschny, May 30 2013

Keywords

Comments

a(n)/A225481(n) is case m = 2 of the scaled generalized Bernoulli numbers defined as Sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{m}(n, k) where S_{m}(n, k) are Stirling-Frobenius subset numbers. A225481(n) can be seen as an analog of the Clausen numbers A141056(n).

Examples

			The numerators of 1/1, 1/2, -2/6, -2/2, 14/30, 33/6, -62/42, -132/2, 254/30, 14585/10, -5110/66, ...(the denominators are A225481(n)).
		

Crossrefs

Programs

  • Mathematica
    EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = If[n == 0, If[k == 0, 1 , 0], (m*(n-k) + m - 1)*EulerianNumber[n-1, k-1, m] + (m*k + 1)* EulerianNumber[n-1, k, m]];
    BS[n_, m_] := Sum[Sum[EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/ ((-m)^k*(k+1)), {k, 0, n}]
    a[n_] := Product[If[Divisible[n+1, p] || Divisible[n, p-1], p, 1], {p, Prime /@ Range @ PrimePi[n+1]}] * BS[n, 2];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 27 2019, from Sage *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :   # The Eulerian numbers
        if n == 0: return 1 if k == 0 else 0
        return ((m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) +
               (m*k+1)*EulerianNumber(n-1, k, m))
    @CachedFunction
    def BS(n, m):   # The generalized scaled Bernoulli numbers
        return (add(add(EulerianNumber(n, j, m)*binomial(j, n - k)
               for j in (0..n))/((-m)^k*(k+1)) for k in (0..n)))
    def A226157(n):   # The numerators of BS(n, 2) relative to A225481
        C = mul(filter(lambda p: ((n+1)%p == 0) or (n%(p-1) == 0), primes(n+2)))
        return C*BS(n, 2)
    [A226157(n) for n in (0..25)]

A226156 a(n) = BS(n) * W(n) where BS = Sum_{k=0..n} ((-1)^k*k!/(k+1)) S(n, k) and S(n, k) the Stirling subset numbers A048993(n, k). W(n) = Product_{ p primes <= n+1 such that p divides n+1 or p-1 divides n } = A225481(n).

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -84802531453387, 0, 90219075042845, 0, -26315271553053477373, 0, 38089920879940267
Offset: 0

Views

Author

Peter Luschny, May 30 2013

Keywords

Comments

a(n)/A225481(n) is a representation of the Bernoulli numbers. This is case m = 1 of the scaled generalized Bernoulli numbers defined as Sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{m}(n,k) where S_{m}(n,k) are generalized Stirling subset numbers. A225481(n) can be seen as an analog of the Clausen numbers A141056(n). Reduced to lowest terms a(n)/A225481(n) becomes A027641(n)/A027642(n).

Examples

			The numerators of 1/1, -1/2, 1/6, 0/2, -1/30, 0/6, 1/42, 0/2, -1/30, 0/10, 5/66, 0/6, -691/2730, 0/14, 35/30, 0/2, -3617/510, 0/6, 43867/798, ... (the denominators are A225481(n)).
		

Crossrefs

Programs

  • Mathematica
    BS[n_] := Sum[((-1)^k*k!/(k + 1)) StirlingS2[n, k], {k, 0, n}];
    W[n_] := Product[If[Divisible[n + 1, p] || Divisible[n, p - 1], p, 1], {p, Prime /@ Range[PrimePi[n + 1]]}];
    a[n_] := BS[n] W[n];
    Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jul 08 2019 *)
  • Sage
    @CachedFunction
    def EulerianNumber(n, k, m) :   # -- The Eulerian numbers --
        if n == 0: return 1 if k == 0 else 0
        return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + \
               (m*k+1)*EulerianNumber(n-1, k, m)
    @CachedFunction
    def SF_BS(n, m):   # -- The scaled Stirling-Frobenius Bernoulli numbers --
        return add(add(EulerianNumber(n, j, m)*binomial(j, n - k) \
               for j in (0..n))/((-m)^k*(k+1)) for k in (0..n))
    def A226156(n):    # -- The numerators of SF_BS(n, 1) relative to A225481 --
        C = mul(filter(lambda p: ((n+1)%p == 0) or (n%(p-1) == 0), primes(n+2)))
        return C*SF_BS(n, 1)
    [A226156(n) for n in (0..25)]

A226040 a(n) = product{ p prime such that p divides n + 1 and p - 1 does not divide n }.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 5, 1, 1, 3, 1, 5, 7, 11, 1, 3, 1, 13, 1, 7, 1, 15, 1, 1, 11, 17, 35, 3, 1, 19, 13, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 5, 17, 13, 1, 3, 55, 7, 19, 29, 1, 15, 1, 31, 7, 1, 13, 33, 1, 17, 23, 35, 1, 3, 1, 37, 5, 19, 77, 39
Offset: 0

Views

Author

Peter Luschny, May 26 2013

Keywords

Examples

			a(41) = 21 = 3*7 = product({2,3,7} setminus {2}).
		

Crossrefs

Programs

  • Maple
    s:= (p, n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
    A226040 := n -> mul(z, z = select(p->s(p,n), select('isprime', [$2..n])));
    seq(A226040(n), n=0..77);
  • Mathematica
    a[n_] := Times @@ Select[ FactorInteger[n+1][[All, 1]], !Divisible[n, #-1] &]; a[0] = 1; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Jun 27 2013, after Maple *)
  • PARI
    a(n)=my(f=factor(n+1)[,1],s=1);prod(i=1,#f,if(n%(f[i]-1),f[i],1)) \\ Charles R Greathouse IV, Jun 27 2013
  • Sage
    def A226040(n):
        F = filter(lambda p: ((n+1) % p == 0) and (n % (p-1)), primes(n))
        return mul(F)
    [A226040(n) for n in (0..77)]
    

Formula

a(n) = A225481(n) / A141056(n).

A226038 Numbers k such that there are no primes p which divide k+1 and p-1 does not divide k.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 22, 24, 26, 28, 30, 31, 36, 40, 42, 44, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 127, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198
Offset: 1

Views

Author

Peter Luschny, May 27 2013

Keywords

Comments

These are the numbers which satisfy the weak Clausen condition but not the Clausen condition.

Examples

			A counterexample is n = 14. 5 divides 15 but 4 does not divide 14.
		

Crossrefs

Programs

  • Maple
    s := (p,n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0);
    F := n -> select(p -> s(p,n), select('isprime', [$2..n]));
    A226038_list := n -> select(k -> [] = F(k), [$0..n]);
    A226038_list(200);
  • Mathematica
    s[p_, n_] := Mod[n+1, p] == 0 && Mod[n, p-1] != 0; f[n_] := Select[ Select[ Range[n], PrimeQ], s[#, n] &]; A226038 = Select[ Range[0, 200], f[#] == {} &] (* Jean-François Alcover, Jul 29 2013, after Maple *)
    Join[{0}, Select[Range[200], And @@ Divisible[#, FactorInteger[# + 1][[All, 1]] - 1] &]] (* Ivan Neretin, Aug 04 2016 *)
  • Sage
    def F(n): return filter(lambda p: ((n+1) % p == 0) and (n % (p-1) != 0), primes(n))
    def A226038_list(n): return list(filter(lambda n: not list(F(n)), (0..n)))
    A226038_list(200)
Showing 1-4 of 4 results.