A225495 Numbers having only weak prime factors, cf. A051635.
1, 3, 7, 9, 13, 19, 21, 23, 27, 31, 39, 43, 47, 49, 57, 61, 63, 69, 73, 81, 83, 89, 91, 93, 103, 109, 113, 117, 129, 131, 133, 139, 141, 147, 151, 161, 167, 169, 171, 181, 183, 189, 193, 199, 207, 217, 219, 229, 233, 241, 243, 247, 249, 267, 271, 273, 279
Offset: 1
Keywords
Examples
a(10) = 31 = A051635(6); a(11) = 39 = 3 * 13 = A051635(1) * A051635(3); a(12) = 43 = A051635(7); a(13) = 47 = A051635(8); a(14) = 49 = 7^2 = A051635(2)^2; a(15) = 57 = 3 * 19 = A051635(1) * A051635(4).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..5000
Programs
-
Haskell
import Data.Set (singleton, fromList, union, deleteFindMin) a225495 n = a225495_list !! (n-1) a225495_list = 1 : h (singleton p) ps [p] where (p:ps) = a051635_list h s xs'@(x:xs) ys | m > x = h (s `union` (fromList $ map (* x) (1 : ys))) xs ys | otherwise = m : h (s' `union` (fromList $ map (* m) ys')) xs' ys' where ys' = m : ys; (m, s') = deleteFindMin s
Formula
Multiplicative closure of A051635.