cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225496 Numbers having no balanced prime factors, cf. A006562.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84
Offset: 1

Views

Author

Reinhard Zumkeller, May 09 2013

Keywords

Comments

a(n) = A047201(n) for n <= 42.

Examples

			a(40) = 49 = 7^2 = A178943(3)^2;
a(41) = 51 = 3 * 17 = A178943(2) * A178943(6);
a(42) = 52 = 2^2 * 13 = A178943(1)^2 * A178943(5);
a(43) = 54 = 2 * 3^3 = A178943(1) * A178943(2)^3;
a(44) = 56 = 2^3 * 7 = A178943(1)^3 * A178943(3);
a(45) = 57 = 3 * 19 = A178943(2) * A178943(7).
		

Crossrefs

Cf. A225493 (strong), A225494 (balanced), A225495 (weak).

Programs

  • Haskell
    import Data.Set (singleton, fromList, union, deleteFindMin)
    a225496 n = a225496_list !! (n-1)
    a225496_list = 1 : h (singleton p) ps [p] where
       (p:ps) = a178943_list
       h s xs'@(x:xs) ys
         | m > x     = h (s `union` (fromList $ map (* x) (1 : ys))) xs ys
         | otherwise = m : h (s' `union` (fromList $ map (* m) ys')) xs' ys'
         where ys' = m : ys; (m, s') = deleteFindMin s

Formula

Multiplicative closure of A178943; a(n) mod A006562(k) > 0 for all k.