cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225498 Weak Carmichael numbers.

Original entry on oeis.org

9, 25, 27, 45, 49, 81, 121, 125, 169, 225, 243, 289, 325, 343, 361, 405, 529, 561, 625, 637, 729, 841, 891, 961, 1105, 1125, 1225, 1331, 1369, 1377, 1681, 1729, 1849, 2025, 2187, 2197, 2209, 2401, 2465, 2809, 2821, 3125, 3321, 3481
Offset: 1

Views

Author

Jonathan Vos Post, May 08 2013

Keywords

Comments

An odd composite number n > 1 is a weak Carmichael number iff the prime factors of n are a subset of the prime factors of Clausen(n-1,1) (cf. A160014). If additionally n divides Clausen(n-1,1) then n is a Carmichael number. - Peter Luschny, May 21 2019

Crossrefs

Programs

  • Maple
    with(numtheory): isweakCarmichael := proc(n)
    if irem(n, 2) = 0 or isprime(n) then return false fi;
    factorset(n) subset factorset(Clausen(n-1, 1)) end: # A160014
    select(isweakCarmichael, [$2..3500]); # Peter Luschny, May 21 2019
  • Mathematica
    pf[n_] := FactorInteger[n][[All,1]];
    Clausen[0, ] = 1; Clausen[n, k_] := Times @@ (Select[Divisors[n],
    PrimeQ[# + k] &] + k);
    weakCarmQ[n_] := If[EvenQ[n] || PrimeQ[n], Return[False], pf[n] == (pf[n] ~Intersection~ pf[Clausen[n-1,1]])];
    Select[Range[2,3500], weakCarmQ] (* Jean-François Alcover, Jun 03 2019 *)