A225498 Weak Carmichael numbers.
9, 25, 27, 45, 49, 81, 121, 125, 169, 225, 243, 289, 325, 343, 361, 405, 529, 561, 625, 637, 729, 841, 891, 961, 1105, 1125, 1225, 1331, 1369, 1377, 1681, 1729, 1849, 2025, 2187, 2197, 2209, 2401, 2465, 2809, 2821, 3125, 3321, 3481
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867 [math.NT], May 4, 2013.
- R. G. E. Pinch, The Carminchael numbers up to 10^15, Math. Comp. 61 (1993), 381-391.
- R. G. E. Pinch, The Carmichael numbers up to 10^18, arXiv:math/060437 [math.NT], 2006.
Programs
-
Maple
with(numtheory): isweakCarmichael := proc(n) if irem(n, 2) = 0 or isprime(n) then return false fi; factorset(n) subset factorset(Clausen(n-1, 1)) end: # A160014 select(isweakCarmichael, [$2..3500]); # Peter Luschny, May 21 2019
-
Mathematica
pf[n_] := FactorInteger[n][[All,1]]; Clausen[0, ] = 1; Clausen[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[# + k] &] + k); weakCarmQ[n_] := If[EvenQ[n] || PrimeQ[n], Return[False], pf[n] == (pf[n] ~Intersection~ pf[Clausen[n-1,1]])]; Select[Range[2,3500], weakCarmQ] (* Jean-François Alcover, Jun 03 2019 *)
Comments