cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225506 -2-Knödel numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 24, 28, 30, 70, 88, 130, 238, 510, 754, 868, 910, 1330, 2068, 2590, 2728, 3304, 4002, 5110, 5406, 8554, 8710, 12958, 15748, 18430, 20878, 21238, 23902, 24178, 32422, 39928, 46870, 49210, 53590, 55678, 57358, 62248, 67858, 70414, 79378, 88198, 95038, 95758, 95788, 102238, 114478
Offset: 1

Views

Author

Paolo P. Lava, May 09 2013

Keywords

Comments

Extension of k-Knödel numbers to k negative, in this case equal to -2. Composite numbers n > 0 such that if 1 < a < n and gcd(n,a) = 1 then a^(n+2) = 1 mod n.
All terms are even numbers.

Crossrefs

Programs

  • Maple
    with(numtheory); ListA225506:=proc(q,k) local a,n,ok;
    for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do
    if gcd(a,n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi;
    od; if ok=1 then print(n); fi; fi; od; end: ListA225506(10^6,-2);
  • Mathematica
    Select[Range[10000], CompositeQ[#] && Divisible[# + 2, CarmichaelLambda[#]] &] (* Amiram Eldar, Mar 28 2019 *)
  • PARI
    is(n) = forprime(p=3, n, if (n%p != 0 && Mod(p,n)^(n+2) != 1, return(0))); 1;
    seq(N) = {
      my(a=vector(N), k=0, n=4);
      while(k < N, if(is(n), a[k++] = n); n += 2);
      a;
    };
    seq(50) \\ Gheorghe Coserea, Dec 23 2018

Extensions

More terms from Gheorghe Coserea, Dec 23 2018