A225506 -2-Knödel numbers.
4, 6, 8, 10, 12, 24, 28, 30, 70, 88, 130, 238, 510, 754, 868, 910, 1330, 2068, 2590, 2728, 3304, 4002, 5110, 5406, 8554, 8710, 12958, 15748, 18430, 20878, 21238, 23902, 24178, 32422, 39928, 46870, 49210, 53590, 55678, 57358, 62248, 67858, 70414, 79378, 88198, 95038, 95758, 95788, 102238, 114478
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Knödel Numbers
Programs
-
Maple
with(numtheory); ListA225506:=proc(q,k) local a,n,ok; for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do if gcd(a,n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: ListA225506(10^6,-2);
-
Mathematica
Select[Range[10000], CompositeQ[#] && Divisible[# + 2, CarmichaelLambda[#]] &] (* Amiram Eldar, Mar 28 2019 *)
-
PARI
is(n) = forprime(p=3, n, if (n%p != 0 && Mod(p,n)^(n+2) != 1, return(0))); 1; seq(N) = { my(a=vector(N), k=0, n=4); while(k < N, if(is(n), a[k++] = n); n += 2); a; }; seq(50) \\ Gheorghe Coserea, Dec 23 2018
Extensions
More terms from Gheorghe Coserea, Dec 23 2018
Comments