cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225524 G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*Lucas(n)*x^n/n ), where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.

Original entry on oeis.org

1, 2, 8, 24, 66, 184, 488, 1248, 3136, 7776, 18780, 44880, 105896, 246124, 567008, 1293840, 2920626, 6545352, 14555388, 32115120, 70421792, 153451488, 332314512, 715843200, 1534016392, 3270661294, 6941489040, 14667591672, 30859685088, 64670865304, 135011595856, 280813639680
Offset: 0

Views

Author

Paul D. Hanna, May 09 2013

Keywords

Comments

Compare g.f. to theta_4(x) = exp( Sum_{n>=1} -(sigma(2*n)-sigma(n))*x^n/n ), where Jacobi theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n*x^(n^2).

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +...
The g.f. equals the product:
A(x) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *...
		

Crossrefs

Programs

  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(prod(m=1, n, 1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1/prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(exp(sum(k=1, n, (sigma(2*k)-sigma(k))*Lucas(k)*x^k/k)+x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-x^2)^n) / (1 - Lucas(n)*x^n + (-x^2)^n).
G.f.: 1/Product_{n>=1} (1 - Lucas(2*n-1)*x^(2*n-1) - x^(4*n-2))^2 * (1 - Lucas(2*n)*x^(2*n) + x^(4*n)).
Logarithmic derivative equals A225525.