cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225534 Numbers whose sum of cubed digits is prime.

Original entry on oeis.org

11, 101, 110, 111, 113, 115, 122, 124, 128, 131, 139, 142, 146, 148, 151, 155, 164, 166, 182, 184, 193, 199, 212, 214, 218, 221, 223, 227, 232, 236, 238, 241, 245, 254, 256, 263, 265, 269, 272, 278, 281, 283, 287, 289, 296, 298, 311, 319, 322, 326, 328, 335
Offset: 1

Views

Author

Keywords

Comments

Note that 11 is the only two-digit number in the sequence.
a(n) ~ n. For 414 < n < 10000, 6.38*n - 528 provides an estimate of a(n) to within 6%.

Examples

			139 is in the sequence because 1^3 + 3^3 + 9^3 = 757, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350],PrimeQ[Total[IntegerDigits[#]^3]]&] (* Harvey P. Dale, Mar 16 2016 *)
  • R
    digcubesum<-function(x) sum(as.numeric(strsplit(as.character(x),split="")[[1]])^3); library(gmp);
    which(sapply(1:1000,function(x) isprime(digcubesum(x))>0))

A254960 Zeroless numbers n with digits d_1, d_2, ... d_k such that d_1^3 + ... + d_k^3 is a cube.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 168, 186, 345, 354, 435, 453, 534, 543, 618, 681, 816, 861, 1156, 1165, 1516, 1561, 1615, 1651, 5116, 5161, 5611, 6115, 6151, 6511, 11233, 11323, 11332, 12133, 12313, 12331, 13123, 13132, 13213, 13231, 13312, 13321, 13369, 13396, 13458, 13485, 13548, 13584, 13639, 13693, 13845, 13854
Offset: 1

Views

Author

Derek Orr, Feb 11 2015

Keywords

Comments

Any one of these terms can have an arbitrary number of 0's in between any two digits. Thus, the numbers with 0's have been omitted as trivial.

Crossrefs

Programs

  • Mathematica
    Select[Range[14000],DigitCount[#,10,0]==0&&IntegerQ[Surd[Total[ IntegerDigits[ #]^3],3]]&] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    for(n=1,10^3,d=digits(n);if(vecsort(d,,8)[1],s=0;for(i=1,#d,s+=d[i]^3);if(ispower(s,3),print1(n,", "))))
Showing 1-2 of 2 results.