A225538 Let r(n) denote the reverse of n. For every n, consider the sequence n_1 = n + 1 + r(n+1), and for m >= 2, n_m = n_(m-1) + 1 + r(n_(m-1) + 1). a(n) is the least m for which n_m is a palindrome, or 0 if there is no such m.
1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 2, 4, 7, 1, 1, 1, 2, 1, 2, 2, 4, 7, 10, 1, 1, 2, 1, 2, 2, 4, 7
Offset: 0
Examples
For n=8, 9 + 9 = 18, 19 + 91 = 110, 111 + 111 = 222 is a palindrome. Thus a(8)=3.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A023108.
Comments