cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225538 Let r(n) denote the reverse of n. For every n, consider the sequence n_1 = n + 1 + r(n+1), and for m >= 2, n_m = n_(m-1) + 1 + r(n_(m-1) + 1). a(n) is the least m for which n_m is a palindrome, or 0 if there is no such m.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 2, 4, 7, 1, 1, 1, 2, 1, 2, 2, 4, 7, 10, 1, 1, 2, 1, 2, 2, 4, 7
Offset: 0

Views

Author

Vladimir Shevelev, May 10 2013

Keywords

Comments

Conjecture: the least n's for which a(n) = 0 are 1895, 1985, 2894, 2984, 3893, and 3983. - Peter J. C. Moses, May 10 2013
See analogous numbers in A023108 for which the so-called Lychrel process "Reverse and Add!", apparently, never leads to a palindrome.

Examples

			For n=8, 9 + 9 = 18, 19 + 91 = 110, 111 + 111 = 222 is a palindrome. Thus a(8)=3.
		

Crossrefs

Cf. A023108.