cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225559 The number of practical numbers <= n where the practical numbers are A005153.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22
Offset: 1

Views

Author

Frank M Jackson, May 10 2013

Keywords

Comments

a(n) is analogous to A000720.

Examples

			a(13)=6 as there are 6 practical numbers <= 13, namely 1, 2, 4, 6, 8 and 12.
		

Crossrefs

Programs

  • Maple
    isprac:= proc(n) local L,i,P;
      L:= sort(ifactors(n)[2],(a,b) -> a[1] 2 then return false fi;
      P:= 2^(L[1][2]+1)-1;
      for i from 2 to nops(L) do
        if L[i][1] > P+1 then return false fi;
        P:= P*(L[i][1]^(L[i][2]+1)-1)/(L[i][1]-1);
      od;
      true
    end proc:
    isprac(1):= true:
    N:= 100: # to get a(1)..a(N)
    P:= select(isprac,[1,seq(i,i=2..N,2)]):
    V:= Vector(N):
    for n from 2 to nops(P) do V[P[n-1] .. P[n]-1]:= n-1 od:
    V[P[-1]..N]:= n:
    convert(V,list); # Robert Israel, May 29 2019
  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; t={}; n3=1; n4=0; While[n3<100, (If[PracticalQ[n3], n4++]; AppendTo[t, n4]; n3++)]; t (* using T. D. Noe's program A005153 *)