A225569 Decimal expansion of Sum_{n>=0} 1/10^(3^n), a transcendental number.
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
0.101000001000000000000000001000000000000000000000000000000000000000000000000000001...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 171.
Links
Programs
-
Mathematica
(* n = 4 is sufficient to get 100 digits *) Sum[1/10^(3^n), {n, 0, 4}] // RealDigits[#, 10, 100]& // First
-
PARI
a(n) = if(n+1 == 3^valuation(n+1, 3), 1, 0); \\ Amiram Eldar, Nov 02 2023
Formula
From Antti Karttunen, Nov 19 2017: (Start)
a(n) = abs(A154271(1+n)). (End)
From Amiram Eldar, Nov 02 2023: (Start)
With offset 1:
Completely multiplicative with a(3^e) = 1, and a(p^e) = 0 for p != 3.
Dirichlet g.f.: 1/(1-3^(-s)). (End)
Comments