A225610 Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.
1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0
Keywords
Examples
For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130. . Diagram of regions Partitions of 7 and partitions of 7 . _ _ _ _ _ _ _ 7 15 |_ _ _ _ | 4 + 3 |_ _ _ _|_ | 5 + 2 |_ _ _ | | 3 + 2 + 2 |_ _ _|_ _|_ | 6 + 1 11 |_ _ _ | | 3 + 3 + 1 |_ _ _|_ | | 4 + 2 + 1 |_ _ | | | 2 + 2 + 2 + 1 |_ _|_ _|_ | | 5 + 1 + 1 7 |_ _ _ | | | 3 + 2 + 1 + 1 |_ _ _|_ | | | 4 + 1 + 1 + 1 5 |_ _ | | | | 2 + 2 + 1 + 1 + 1 |_ _|_ | | | | 3 + 1 + 1 + 1 + 1 3 |_ _ | | | | | 2 + 1 + 1 + 1 + 1 + 1 2 |_ | | | | | | 1 + 1 + 1 + 1 + 1 + 1 + 1 1 |_|_|_|_|_|_|_| . . 1 2 3 4 5 6 7 . Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6: . _ _ _ _ _ _ . |_ _ _ | . |_ _ _|_ | . |_ _ | | . _ _ _ _ _ |_ _|_ _|_ | . |_ _ _ | |_ _ _ | | . _ _ _ _ |_ _ _|_ | |_ _ _|_ | | . |_ _ | |_ _ | | |_ _ | | | . _ _ _ |_ _|_ | |_ _|_ | | |_ _|_ | | | . _ _ |_ _ | |_ _ | | |_ _ | | | |_ _ | | | | . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | | .|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| . . 4 10 18 33 52 87
Comments