A181018 Maximum number of 1's in an n X n binary matrix with no three 1's adjacent in a line along a row, column or diagonally.
1, 4, 6, 9, 16, 20, 26, 36, 42, 52, 64, 74, 86, 100, 114, 130
Offset: 1
Examples
Some solutions for 6 X 6: 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 A solution with 73 ones for 12 X 12 (I replaced "0" with "." for readability): 1 1 . 1 1 . 1 1 . 1 . 1 1 1 . . 1 1 . 1 1 . 1 1 . . . 1 . . . . . . 1 . 1 1 . 1 . 1 . 1 1 . . 1 . 1 1 . . 1 1 . . 1 1 . 1 . . . 1 . 1 . 1 . . 1 1 1 . . 1 1 . . 1 . 1 . . 1 . 1 . 1 . 1 . . 1 1 1 . . 1 1 . . 1 1 . . 1 . 1 . . . . 1 . 1 . 1 . 1 1 . 1 1 . 1 1 . . 1 1 1 . 1 . 1 1 . 1 . 1 . 1 - _Manfred Scheucher_, Jul 23 2015 An optimal solution with 74 ones (denoted by O) for 12 X 12 (also symmetric): O . O . O . O O . O O . O O . O O . . . O O . O . O . O . O O . . . O O O . . . O O . O O . O . . O O . . . O . . . . O O O . O O . O . O O . . . . O O . O . O O . O O O . . . . O . . . O O . . O . O O . O O . . . O O O . . . O O . O . O . O . O O . . . O O . O O . O O . O O . O . O . O - _Giovanni Resta_, Jul 29 2015
Links
- Manfred Scheucher, Python Script
- Peter J. Taylor, Java program to compute terms
Programs
-
Java
See Taylor link (MATLAB with CPLEX) function v = A181018(n) % Grid = [1:n]' * ones(1,n) + n*ones(n,1)*[0:n-1]; f = -ones(n^2,1); A = sparse(4*(n-2)*(n-1),n^2); count = 0; for i =1:n for j = 1:n-2 count = count+1; A(count, [Grid(i,j),Grid(i,j+1),Grid(i,j+2)]) = 1; end end for i = 1:n-2 for j = 1:n count = count+1; A(count, [Grid(i,j),Grid(i+1,j),Grid(i+2,j)]) = 1; end end for i = 1:n-2 for j = 1:n-2 count = count+2; A(count-1,[Grid(i,j+2),Grid(i+1,j+1),Grid(i+2,j)]) = 1; A(count, [Grid(i,j),Grid(i+1,j+1),Grid(i+2,j+2)]) = 1; end end b = 2*ones(4*(n-2)*(n-1),1); [x,v,exitflag,output] = cplexbilp(f,A,b); end; for n = 1:11 A(n) = A181018(n); end A % Robert Israel, Jan 14 2016
Formula
a(n) >= ceiling(2n/3)^2; a(3k) >= A002943(k) = 2k(2k+1). - M. F. Hasler, Jul 17 2015; revised by Juhani Heino, Aug 11 2015
a(n) >= ceiling(n^2/2). - Juhani Heino, Aug 11 2015
Extensions
a(11)-a(12) from M. F. Hasler, Jul 20 2015
a(12) deleted by Manfred Scheucher, Jul 23 2015
a(12) from Giovanni Resta, Jul 29 2015
PARI code (which implemented a conjectured formula shown to underestimate) deleted by Peter J. Taylor, Jan 06 2016
a(13)-a(15) from Peter J. Taylor, Jan 09 2016
a(16) from Peter J. Taylor, Jan 14 2016
Comments