cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225627 a(n) = lcm(A000793(n),p1,p2,...,pk) for such a partition {p1+p2+...+pk} of n that maximizes this value among all partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 30, 84, 120, 180, 210, 420, 660, 780, 1260, 4620, 5460, 5460, 5460, 9240, 13860, 13860, 16380, 32760, 120120, 180180, 180180, 235620, 180180, 471240, 1021020, 1021020, 1141140, 1141140, 2282280, 2282280, 4476780, 4476780, 6846840, 6846840
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

Row 2 of A225630.
This could be called a "twice-iterated Landau's function."

Crossrefs

Programs

  • Scheme
    (define (A225627 n) (let ((maxlcm (list 0))) (fold_over_partitions_of n (A000793 n) lcm (lambda (p) (set-car! maxlcm (max (car maxlcm) p)))) (car maxlcm)))
    (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))

Formula

a(n) = A225636(n)*A000793(n).