A225703 Composite squarefree numbers n such that p(i)-3 divides n+3, where p(i) are the prime factors of n.
77, 2717, 3245, 18221, 30797, 37177, 46397, 51997, 56573, 61997, 111757, 128573, 149765, 158197, 263117, 264517, 314717, 437437, 475157, 617437, 667573, 683537, 701005, 718333, 834197, 864497, 902957, 904397, 929005, 945277, 1030237, 1096205, 1139653, 1188317
Offset: 1
Keywords
Examples
Prime factors of 37177 are 7, 47 and 113. We have that (37177+3)/(7-3) = 9295, (37177+3)/(47-3) = 845 and (37177+3)/(113-3) = 338.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..80
Programs
-
Maple
with(numtheory); A225703:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225703(10^9,3);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 3] > 0 && Union[Mod[n + 3, p - 3]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)