cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225703 Composite squarefree numbers n such that p(i)-3 divides n+3, where p(i) are the prime factors of n.

Original entry on oeis.org

77, 2717, 3245, 18221, 30797, 37177, 46397, 51997, 56573, 61997, 111757, 128573, 149765, 158197, 263117, 264517, 314717, 437437, 475157, 617437, 667573, 683537, 701005, 718333, 834197, 864497, 902957, 904397, 929005, 945277, 1030237, 1096205, 1139653, 1188317
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 37177 are 7, 47 and 113. We have that (37177+3)/(7-3) = 9295, (37177+3)/(47-3) = 845 and (37177+3)/(113-3) = 338.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225703:=proc(i,j) local c, d, n, ok, p, t;
    for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225703(10^9,3);
  • Mathematica
    t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 3] > 0 && Union[Mod[n + 3, p - 3]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)