A225707 Composite squarefree numbers n such that p(i)-7 divides n+7, where p(i) are the prime factors of n.
33, 65, 165, 209, 345, 713, 1353, 2717, 2945, 4433, 4745, 6149, 7733, 9785, 11297, 16985, 21593, 25265, 26273, 28545, 32357, 35673, 47945, 49913, 55913, 61013, 69113, 69513, 88913, 95465, 106913, 116513, 119009, 121785, 133433, 159185, 167765, 201773
Offset: 1
Keywords
Examples
Prime factors of 7733 are 11, 19 and 37. We have that (7733+7)/(11-7) = 1935, (7733+7)/(19-7) = 645 and (7733+7)/(37-7) = 258.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..50
Programs
-
Maple
with(numtheory); A225707:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225707(10^9,7);
-
Mathematica
t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 7] > 0 && Union[Mod[n + 7, p - 7]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)