A225709 Composite squarefree numbers n such that p(i)-9 divides n+9, where p(i) are the prime factors of n.
15, 21, 33, 35, 39, 55, 77, 91, 119, 143, 195, 231, 255, 299, 455, 551, 651, 663, 715, 935, 1131, 1155, 1419, 2015, 2035, 2431, 3003, 3111, 3927, 4611, 5451, 7215, 7735, 8151, 8671, 9191, 10455, 11571, 15015, 15477, 16511, 18343, 18615, 23541, 24871, 25415, 28391
Offset: 1
Keywords
Examples
Prime factors of 16511 are 11, 19 and 79. We have that (16511+9)/(11-9) = 8260, (16511+9)/(19-9) = 1652 and (16511+9)/(79-9) = 236.
Programs
-
Maple
with(numtheory); A225709:=proc(i,j) local c, d, n, ok, p, t; for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225709(10^9,9);
-
Mathematica
t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 9, p - 9]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)