A225712 Composite squarefree numbers n such that p(i)+2 divides n-2, where p(i) are the prime factors of n.
182, 21827, 32942, 46055, 84502, 151202, 191522, 361802, 532247, 780626, 1368642, 1398377, 1425230, 1556258, 1751927, 1932338, 2209727, 3496502, 4078802, 4216862, 4438709, 5191562, 5991477, 7413002, 8385365, 8797502, 11749127, 13634138, 15921677, 16772177
Offset: 1
Keywords
Examples
Prime factors of 151202 are 2, 19, 23 and 173. We have that (151202-2)/(2+2) = 37800, (151202-2)/(19+2) = 7200, (151202-2)/(23+2) = 6048 and (151202-2)/(173+2)= 864.
Programs
-
Maple
with(numtheory); A225712:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225712(10^9,-2);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 2, p + 2]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)