A225713 Composite squarefree numbers n such that p(i)+3 divides n-3, where p(i) are the prime factors of n.
195, 1235, 1443, 2915, 4403, 5883, 35203, 37635, 54723, 66563, 77503, 97555, 157403, 158403, 188355, 200203, 265411, 273003, 299715, 317203, 358179, 376995, 380373, 438243, 476003, 492803, 506883, 511683, 567633, 630203, 636803, 654951, 742269, 764463, 827203
Offset: 1
Keywords
Examples
Prime factors of 5883 are 3, 37 and 53. We have that (3+3)/(5883-3) = 980, (37+3)/(5883-3) = 147 and (53+3)/(5883-3) = 105.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory); A225713:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225713(10^9,-3);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 3, p + 3]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)