cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225714 Composite squarefree numbers n such that p(i)+4 divides n-4, where p(i) are the prime factors of n.

Original entry on oeis.org

1054, 9541, 91039, 371074, 985054, 1043959, 1063003, 1107754, 1162498, 1357339, 1786054, 4018018, 5368549, 5820154, 8725747, 9994954, 12402709, 17138503, 17914054, 20855839, 23116009, 25077199, 26545054, 29247229, 30308359, 31424419, 33892759, 44141629
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 1043959 are 7, 293 and 509. We have that (1043959-4)/(7+4) = 94905, (1043959-4)/(293+4) = 3515 and (1043959-4)/(509+4) = 2035.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225714:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225714(10^9,-4);

Extensions

a(20)-a(28) from Donovan Johnson, Nov 15 2013

A225716 Composite squarefree numbers n such that p(i)+6 divides n-6, where p(i) are the prime factors of n.

Original entry on oeis.org

6, 26781, 120791, 5099531, 5720435, 14637451, 24110358, 31552261, 33792198, 57804181, 71925054, 88324781, 92849126, 441031331, 650715071, 924029951, 1425902869, 2093676486, 2336689491, 3273172441, 4533042611, 4711366831, 5162021871, 5502040431, 6427899582
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 14637451 are 41, 229 and 1559. We have that (14637451-6)/(41+6) = 311435, (14637451-6)/(229+6) = 62287 and (14637451-6)/(1559+6) = 9353.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225716:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225716(10^9,-6);

Extensions

a(14)-a(25) from Donovan Johnson, Nov 15 2013
Showing 1-2 of 2 results.