cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225715 Composite squarefree numbers n such that p(i)+5 divides n-5, where p(i) are the prime factors of n.

Original entry on oeis.org

165, 1085, 3965, 4085, 5621, 7733, 8645, 14405, 19877, 23405, 33269, 40397, 45365, 66929, 88949, 110885, 114917, 135005, 243941, 275621, 280085, 421085, 439565, 455285, 460229, 474677, 480245, 496589, 505517, 518081, 570245, 706805, 709973, 900581, 912021
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 7733 are 11, 19 and 37. We have that (7733-5)/(11+5) = 483, (7733-5)/(19+5) = 322 and (7733-5)/(37+5) = 184.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225715:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225715(10^9,-5);
  • Mathematica
    t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 5, p + 5]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)

A225717 Composite squarefree numbers n such that p(i)+7 divides n-7, where p(i) are the prime factors of n.

Original entry on oeis.org

1015, 4147, 7567, 9367, 13447, 15847, 25543, 29127, 33847, 39319, 40807, 58327, 80647, 87607, 116071, 135439, 139867, 145915, 177415, 186667, 190747, 203287, 222343, 253897, 321127, 356167, 380887, 384391, 391207, 403495, 453607, 470587, 501607, 602167, 606535
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 15847 are 13, 23 and 53. We have that (15847-7)/(13+7) = 792, (15847-7)/(23+7) = 528 and (15847-7)/(53+7) = 264.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225717:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225717(10^9,-7);
  • Mathematica
    t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 7, p + 7]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)
Showing 1-2 of 2 results.