A225716 Composite squarefree numbers n such that p(i)+6 divides n-6, where p(i) are the prime factors of n.
6, 26781, 120791, 5099531, 5720435, 14637451, 24110358, 31552261, 33792198, 57804181, 71925054, 88324781, 92849126, 441031331, 650715071, 924029951, 1425902869, 2093676486, 2336689491, 3273172441, 4533042611, 4711366831, 5162021871, 5502040431, 6427899582
Offset: 1
Keywords
Examples
Prime factors of 14637451 are 41, 229 and 1559. We have that (14637451-6)/(41+6) = 311435, (14637451-6)/(229+6) = 62287 and (14637451-6)/(1559+6) = 9353.
Programs
-
Maple
with(numtheory); A225716:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225716(10^9,-6);
Extensions
a(14)-a(25) from Donovan Johnson, Nov 15 2013