A225718 Composite squarefree numbers n such that p(i)+8 divides n-8, where p(i) are the prime factors of n.
4958, 51653, 55583, 271358, 291338, 789173, 1379438, 5430797, 5785073, 6350885, 7159958, 10532333, 12822818, 13892243, 14809517, 23831423, 24547058, 26734058, 27391073, 32079671, 32673383, 36126098, 42560693, 51346358, 52177658, 54949958
Offset: 1
Keywords
Examples
Prime factors of 789173 are 7, 11, 37 and 277. We have that (789173-8)/(7+8) = 52611, (789173-8)/(11+8) = 41535, (789173-8)/(37+8) = 17537 and (789173-8)/(277+8) = 2769.
Programs
-
Maple
with(numtheory); A225718:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225718(10^9,-8);