A225717 Composite squarefree numbers n such that p(i)+7 divides n-7, where p(i) are the prime factors of n.
1015, 4147, 7567, 9367, 13447, 15847, 25543, 29127, 33847, 39319, 40807, 58327, 80647, 87607, 116071, 135439, 139867, 145915, 177415, 186667, 190747, 203287, 222343, 253897, 321127, 356167, 380887, 384391, 391207, 403495, 453607, 470587, 501607, 602167, 606535
Offset: 1
Keywords
Examples
Prime factors of 15847 are 13, 23 and 53. We have that (15847-7)/(13+7) = 792, (15847-7)/(23+7) = 528 and (15847-7)/(53+7) = 264.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory); A225717:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225717(10^9,-7);
-
Mathematica
t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n - 7, p + 7]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* T. D. Noe, May 17 2013 *)