cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225720 Composite squarefree numbers n such that p+10 divides n-10 for each prime p dividing n.

Original entry on oeis.org

10, 79222, 206965, 784090, 1673122, 2227123, 4798090, 5202571, 9196330, 13146715, 15015430, 18213595, 19342333, 21735010, 27907435, 28234018, 28240090, 37394146, 38710990, 53990695, 54772453, 70646509, 79671826, 89678830, 107251990, 114572545, 115005187, 137245690
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 2227123 are 19, 251 and 467. We have that (2227123-10)/(19+10) = 76797, (2227123-10)/(251+10) = 8533 and (2227123-10)/(467+10) = 4669.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225720:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225720(10^9,-10);
  • PARI
    is(n,f=factor(n))=if(#f[,2]<2 || vecmax(f[,2])>1, return(0)); for(i=1,#f~, if((n-10)%(f[i,1]+10), return(0))); 1 \\ Charles R Greathouse IV, Nov 05 2017

Extensions

a(20)-a(27) from Donovan Johnson, Nov 15 2013
a(28) from Charles R Greathouse IV, Nov 05 2017

A225718 Composite squarefree numbers n such that p(i)+8 divides n-8, where p(i) are the prime factors of n.

Original entry on oeis.org

4958, 51653, 55583, 271358, 291338, 789173, 1379438, 5430797, 5785073, 6350885, 7159958, 10532333, 12822818, 13892243, 14809517, 23831423, 24547058, 26734058, 27391073, 32079671, 32673383, 36126098, 42560693, 51346358, 52177658, 54949958
Offset: 1

Views

Author

Paolo P. Lava, May 13 2013

Keywords

Examples

			Prime factors of 789173 are 7, 11, 37 and 277. We have that (789173-8)/(7+8) = 52611, (789173-8)/(11+8) = 41535, (789173-8)/(37+8) = 17537 and (789173-8)/(277+8) = 2769.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225718:=proc(i,j) local c, d, n, ok, p, t;
    for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
    for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
    if  not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: A225718(10^9,-8);
Showing 1-2 of 2 results.