A225719 Composite squarefree numbers n such that p(i)+9 divides n-9, where p(i) are the prime factors of n.
2193, 3705, 9889, 12749, 23529, 116265, 283929, 514569, 641769, 661789, 772809, 950609, 1144313, 1241561, 1452009, 1708233, 1797609, 1878569, 2244901, 2255689, 2675409, 2792937, 3426089, 4021369, 4187465, 5242569, 7327329, 7942209, 8601329, 8668921, 9608729
Offset: 1
Keywords
Examples
Prime factors of 116265 are 3, 5, 23 and 337. We have that (116265-9)/(3+9) = 9688, (116265-9)/(5+9) = 8304, (116265-9)/(23+9) = 3633 and (116265-9)/(337+9) = 336.
Programs
-
Maple
with(numtheory); A225719:=proc(i,j) local c, d, n, ok, p, t; for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi; if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: A225719(10^9,-9);