A225744 The number of isomorphism classes of connected, Generalized Alexander quandles of order n.
1, 0, 1, 1, 3, 0, 5, 3, 8, 0, 9, 3, 11, 0, 3, 9, 15, 0, 17, 3, 5, 0, 21, 5, 34, 0, 35, 5, 27, 0, 29, 17, 9, 0, 15, 18, 35, 0, 11, 9, 39, 0, 41, 9, 24, 0, 45, 21, 76, 0, 15, 11, 51, 0, 27, 19, 17, 0, 57, 15, 59, 0, 40, 97, 33, 0, 65, 15, 21, 0, 69, 37, 71, 0, 39, 17, 45, 0, 77, 34, 218, 0, 81, 15, 45, 0, 27, 27, 87, 0, 55, 21, 29, 0, 51, 43, 95, 0, 72, 34
Offset: 1
Keywords
Links
- J. Scott Carter, A Survey of Quandle Ideas, arXiv:1002.4429 [math.GT]
- W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307, 2013
Programs
-
GAP
IsConnected:=function(A) local B,LL; B:=TransposedMat(A); LL:=List(B,x->PermList(x)); return IsTransitive(Group(LL),[1..Length(A)]); end;; MakeGAlex:=function(f,g) local e,n,QM,i,j; e:=Elements(g); n:=Length(e); QM:=List([1..n],t->[1..n]); for i in [1..n] do for j in [1..n] do QM[i][j]:=Position(e,Image(f,e[i]*e[j]^(-1))*e[j]); od; od; return QM; end;; a:=[];; for n in [1..100] do a[n]:=0; N:=NrSmallGroups(n); for u in [1..N] do g:=SmallGroup(n,u); ag:=AutomorphismGroup(g);; eag:=List(ConjugacyClasses(ag),Representative); for t in eag do QM:=MakeGAlex(t,g); if IsConnected(QM) then a[n]:=a[n]+1; fi; od; od; od;; a;
Comments