A225798 The number of idempotents in the Jones (or Temperley-Lieb) monoid on the set [1..n].
1, 2, 5, 12, 36, 96, 311, 886, 3000, 8944, 31192, 96138, 342562, 1083028, 3923351, 12656024, 46455770, 152325850, 565212506, 1878551444, 7033866580, 23645970022, 89222991344, 302879546290, 1150480017950, 3938480377496, 15047312553918, 51892071842570, 199274492098480, 691680497233180
Offset: 1
Keywords
Links
- Attila Egri-Nagy, Nick Loughlin, and James Mitchell Table of n, a(n) for n = 1..30 (a(1) to a(21) from Attila Egri-Nagy, a(22)-a(24) from Nick Loughlin, a(25)-a(30) from James Mitchell)
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.
- I. Dolinka, J. East et al, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv:1507.04838 [math.CO], 2015. Table 4 and 5.
- T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.
- J. D. Mitchell et al., Semigroups package for GAP.
Programs
-
GAP
for i in [1..18] do Print(NrIdempotents(JonesMonoid(i)), "\n"); od;
Extensions
a(20)-a(21) from Attila Egri-Nagy, Sep 12 2014
a(22)-a(24) from Nick Loughlin, Jan 23 2015
a(25)-a(30) from James Mitchell, May 21 2016
Comments