A225799 a(n) = Sum_{k=0..n} binomial(n,k) * 10^(n-k) * Fibonacci(n+k).
0, 11, 143, 3058, 55341, 1052755, 19717984, 371084087, 6973353387, 131101759514, 2464418392865, 46327530894271, 870879506447808, 16371134451297043, 307750614069672631, 5785211638097121890, 108752568228856901349, 2044371455527726003547, 38430858858805840293152
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (13,109).
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[n, k]*10^(n - k)*Fibonacci[n + k], {k, 0, n}], {n, 0, 25}] FullSimplify[Table[((13 + 11 Sqrt[5])^n - (13 - 11 Sqrt[5])^n)/(2^n Sqrt[5]), {n, 0, 25}]] LinearRecurrence[{13,109},{0,11},30] (* Harvey P. Dale, Jul 31 2018 *)
Formula
a(n) = ((13 + 11*sqrt(5))^n - (13 - 11*sqrt(5))^n)/(2^n*sqrt(5)).
a(n) = 13*a(n-1) + 109*a(n-2); a(0)=0, a(1)=11.
G.f.: 11*x*/(1 - 13*x - 109*x^2). - Corrected by Georg Fischer, May 10 2019
Comments