A225814 Nonsquarefree integers m such that, for prime p, if p^k|m then 2+p^k|2+m.
44770, 825550, 27354103, 123572293, 140307550, 148925950, 213663175, 375064963, 1002265990, 1579248097, 2953883023, 3985833850, 4716952513, 4871428198, 4929024175, 9067177798
Offset: 1
Keywords
Examples
44770 = 2*5*37*11^2 is in the list because 44772 is divisible by 4, 7, 39, 13 and 123. 27354103 = 151*3697*7^2 is in the list because 27354105 is divisible by 153, 3699, 9 and 51.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..50
Programs
-
Mathematica
PPDivs[m_Integer]:=Module[{f=FactorInteger[m]}, Flatten[Table[First[f[[i]]]^Range[Last[f[[i]]]], {i, 1, Length[f]}]]]; Select[Select[ Range[1000000], !SquareFreeQ[#]&], Union[ Mod[#+2, 2+PPDivs[#] ] ]== {0} &]
Comments