A225816 Square array A(n,k) = (k!)^n, n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 24, 36, 8, 1, 1, 1, 120, 576, 216, 16, 1, 1, 1, 720, 14400, 13824, 1296, 32, 1, 1, 1, 5040, 518400, 1728000, 331776, 7776, 64, 1, 1, 1, 40320, 25401600, 373248000, 207360000, 7962624, 46656, 128, 1, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 6, 24, 120, ... 1, 1, 4, 36, 576, 14400, ... 1, 1, 8, 216, 13824, 1728000, ... 1, 1, 16, 1296, 331776, 207360000, ... 1, 1, 32, 7776, 7962624, 24883200000, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..36, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> k!^n: seq(seq(A(n,d-n), n=0..d), d=0..12);
Formula
A(n,k) = (k!)^n.
A(n,k) = k^n * A(n,k-1) for k>0, A(n,0) = 1.
A(n,k) = k! * A(n-1,k) for n>0, A(0,k) = 1.
G.f. of column k: 1/(1-k!*x).
Comments