cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227608 Denominators of A225825(n) difference table written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 2, 3, 3, 2, 30, 15, 15, 15, 30, 2, 15, 15, 15, 15, 2, 42, 21, 105, 105, 105, 21, 42, 2, 21, 21, 105, 105, 21, 21, 2, 30, 15, 105, 105, 105, 105, 105, 15, 30, 2, 15, 15, 105, 105, 105, 105, 15, 15, 2, 66, 33, 165, 165, 1155, 231, 1155, 165, 165, 33, 66, 2, 33, 33, 165, 165, 231, 231, 165, 165, 33, 33, 2
Offset: 0

Views

Author

Paul Curtz, Aug 10 2013

Keywords

Examples

			1,
-1/2,      1/2,
-1/6,     -2/3,     -1/6,
1/2,       1/3,     -1/3,     -1/2,
7/30,    11/15,    16/15,    11/15,     7/30,
-3/2,   -19/15,    -8/15,     8/15,    19/15,    3/2,
-31/42, -47/21, -368/105, -424/105, -368/105, -47/21, -31/42.
Row sums: 1, 0/2, -6/6, 0/6, 90/30, 0/30, -3570/210, 0/210, 32550/210,... .
Are the denominators A034386(n+1)?
Reduced row sums: 1, 0, -1, 0, 3, 0, -17, 0, 155,... = -A036968(n+1)? See A226158(n+2). First 100 terms checked by Jean-François Alcover.
		

Crossrefs

Programs

  • Mathematica
    max = 12; b[0] = 1; b[n_] := Numerator[ BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; t = Table[b[n], {n, 0, max}] / Table[ Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[n]}] // Denominator, {n, 0, max}]; dt = Table[ Differences[t, n], {n, 0, max}]; Table[ dt[[n-k+1, k]] // Denominator, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)

Extensions

More terms from Jean-François Alcover, Aug 12 2013

A229023 Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.

Original entry on oeis.org

1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by 2^n and congruent to 1, 2, 4, 5, 7 or 8 mod 9.

Examples

			1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
		

Crossrefs

Cf. A181131 (denominators), A225825, A110501 (Genocchi numbers), A141056 (Clausen numbers), A212196 (Bernoulli medians), A005439 (Genocchi medians).

Programs

  • Mathematica
    nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator

A230324 a(n) = A226158(n) - 2*A226158(n+1).

Original entry on oeis.org

2, 1, -1, -2, 1, 6, -3, -34, 17, 310, -155, -4146, 2073, 76454, -38227, -1859138, 929569, 57641238, -28820619, -2219305810, 1109652905, 103886563462, -51943281731, -5810302084962, 2905151042481, 382659344967926
Offset: 0

Views

Author

Paul Curtz, Oct 16 2013

Keywords

Comments

The array A(n,k) = A(n-1,k+1) - A(n-1,k) of the sequence in the first row and higher-order sequences in followup rows starts:
2, 1, -1, -2, 1, 6, -3, ...
-1, -2, -1, 3, 5, -9, -31, ...
-1, 1, 4, 2, -14, -22, 82, ...
2, 3, -2, -16, -8, 104, 160, ...
1, -5, -14, 8, 112, 56, -1160, ...
-6, -9, 22, 104, -56, -1216, -608, ...
-3, 31, 82, -160, -1160, 608, 18880, ...
etc.
a(n) is an autosequence: Its inverse binomial transform is the sequence (up to a sign), which means top row and left column in the difference array have the same absolute values.
The main diagonal is the double of the first upper diagonal: A(n,n) = 2*A(n,n+1).
A(n,n+1) = (-1)^n*A005439(n), which also appears as the first upper diagonal of the difference array of A226158(n).

Examples

			a(0) =  0 - 2 * (-1) =  2,
a(1) = -1 - 2 * (-1) =  1,
a(2) = -1 - 2 *   0  = -1,
a(3) =  0 - 2 *   1  = -2,
a(4) =  1 - 2 *   0  =  1,
a(5) =  0 - 2 * (-3) =  6.
		

Crossrefs

Cf. A050946.

Programs

  • Maple
    A226158 := proc(n)
        if n = 0 then
            0;
        else
            Zeta(1-n)*2*n*(2^n-1) ;
        end if;
    end proc:
    A230324 := proc(n)
        A226158(n)-2*A226158(n+1) ;
    end proc: # R. J. Mathar, Oct 28 2013
  • Mathematica
    a[0] = 2; a[1] = 1; a[n_] := n EulerE[n-1, 0] - 2 (n+1) EulerE[n, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 07 2017 *)

Formula

a(n)/2 + A164555(n)/A027642(n) = 2*A225825(n)/A141056(n).
Showing 1-3 of 3 results.