cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225832 Number of binary pattern classes in the (8,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

1, 136, 16576, 4212736, 1073790976, 274882625536, 70368756760576, 18014399717441536, 4611686021648613376, 1180591621026648948736, 302231454904481927397376, 77371252455415432018395136, 19807040628566295504618520576
Offset: 0

Views

Author

Yosu Yurramendi, May 16 2013

Keywords

Crossrefs

A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.

Programs

  • Magma
    I:=[1,136,16576]; [n le 3 select I[n] else 256*Self(n-1)+256*Self(n-2)-65536*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    CoefficientList[Series[(1 - 120 x - 18496 x^2) / ((1 - 16 x) (1 + 16 x) (1 - 256 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)

Formula

a(n) = 2^8*a(n-1) + 2^8*a(n-2) - (2^8)^2*a(n-3), with n>2, a(0)=1, a(1)=136, a(2)=16576.
a(n) = 2^(4n-3)*(2^(4n+1)-(2^4-1)*(-1)^n+2^4+5).
G.f.: (1-120*x-18496*x^2)/((1-16*x)*(1+16*x)*(1-256*x)).