cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225853 Expansion of phi(x) / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 3, 2, 0, 0, 4, 6, 0, 0, 7, 8, 0, 0, 13, 14, 0, 0, 19, 20, 0, 0, 29, 34, 0, 0, 43, 46, 0, 0, 62, 70, 0, 0, 90, 96, 0, 0, 126, 138, 0, 0, 174, 186, 0, 0, 239, 262, 0, 0, 325, 346, 0, 0, 435, 472, 0, 0, 580, 620, 0, 0, 769, 826, 0, 0, 1007, 1072, 0
Offset: 0

Views

Author

Michael Somos, May 17 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 7*x^12 + 8*x^13 + 13*x^16 + ...
1/q + 2*q^5 + 3*q^23 + 2*q^29 + 4*q^47 + 6*q^53 + 7*q^71 + 8*q^77 + 13*q^95 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3,0,q]/QPochhammer[q^4],{q,0,n}];
    a[n_]:= SeriesCoefficient[QPochhammer[q^2,q^4]^3/QPochhammer[q,q^2]^2, {q,0,n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3), n))}

Formula

Expansion of chi(x)^2 * chi(-x^2) = chi(x)^3 * chi(-x) = chi(-x^2)^3 / chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/4) * eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A029552.
G.f.: Product_{k>0} (1 - x^(4*k-2))^3 / (1 - x^(2*k-1))^2 = (Sum_{k in Z} x^k^2) / (Product_{k>0} (1 - x^(4*k))).
a(n) = (-1)^n * A143161(n). a(4*n + 2) = a(4*n + 3) = 0.