A225853 Expansion of phi(x) / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.
1, 2, 0, 0, 3, 2, 0, 0, 4, 6, 0, 0, 7, 8, 0, 0, 13, 14, 0, 0, 19, 20, 0, 0, 29, 34, 0, 0, 43, 46, 0, 0, 62, 70, 0, 0, 90, 96, 0, 0, 126, 138, 0, 0, 174, 186, 0, 0, 239, 262, 0, 0, 325, 346, 0, 0, 435, 472, 0, 0, 580, 620, 0, 0, 769, 826, 0, 0, 1007, 1072, 0
Offset: 0
Keywords
Examples
1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 7*x^12 + 8*x^13 + 13*x^16 + ... 1/q + 2*q^5 + 3*q^23 + 2*q^29 + 4*q^47 + 6*q^53 + 7*q^71 + 8*q^77 + 13*q^95 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[EllipticTheta[3,0,q]/QPochhammer[q^4],{q,0,n}]; a[n_]:= SeriesCoefficient[QPochhammer[q^2,q^4]^3/QPochhammer[q,q^2]^2, {q,0,n}];
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3), n))}
Formula
Expansion of chi(x)^2 * chi(-x^2) = chi(x)^3 * chi(-x) = chi(-x^2)^3 / chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/4) * eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A029552.
G.f.: Product_{k>0} (1 - x^(4*k-2))^3 / (1 - x^(2*k-1))^2 = (Sum_{k in Z} x^k^2) / (Product_{k>0} (1 - x^(4*k))).
a(n) = (-1)^n * A143161(n). a(4*n + 2) = a(4*n + 3) = 0.
Comments