A225857 Numbers of the form 2^i*3^j*(12k+1) or 2^i*3^j*(12k+5), i, j, k >= 0.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 18, 20, 24, 25, 26, 27, 29, 30, 32, 34, 36, 37, 39, 40, 41, 45, 48, 49, 50, 51, 52, 53, 54, 58, 60, 61, 64, 65, 68, 72, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 89, 90, 96, 97, 98, 100, 101, 102, 104, 106, 108, 109, 111
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..200] | d mod 4 eq 1 where d is n div (2^Valuation(n,2)*3^Valuation(n,3))]; // Bruno Berselli, May 16 2013
-
Mathematica
Select[Range[120], Mod[#/Times @@ ({2, 3}^IntegerExponent[#, {2, 3}]), 4] == 1 &] (* Amiram Eldar, Nov 14 2023 *)
-
PARI
for(n=1,200,t=n/(2^valuation(n,2)*3^valuation(n,3));if((t%4==1),print1(n,",")))
-
Python
from itertools import count from sympy import integer_log def A225857(n): def f(x): c = n for i in range(integer_log(x,3)[0]+1): i2 = 3**i for j in count(0): k = i2<
x: break m = x//k c += (m-7)//12+(m-11)//12+2 return c m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 24 2025
Extensions
Name clarified by Peter Munn, Nov 10 2023
Comments