cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225870 Nonnegative integers of the form x*y*z*(x+y-z) with integers x>=y>=z.

Original entry on oeis.org

0, 1, 4, 9, 12, 16, 24, 25, 36, 40, 45, 49, 60, 64, 72, 81, 84, 100, 105, 112, 120, 121, 144, 160, 169, 180, 189, 192, 196, 216, 220, 225, 240, 252, 256, 264, 280, 289, 297, 300, 312, 324, 336, 352, 360, 361, 364, 384, 385, 396, 400, 420, 429, 432, 441, 480
Offset: 1

Views

Author

Michael Somos, May 18 2013

Keywords

Comments

For n>=0 and n = x*y*z*(x+y-z) with integers x>=y>=z then we can even find nonnegative solutions (x,y,z). However, if we restrict to z>=0 then there are no solutions (x,y,z) in case n<0.
The negative integers of the form x*y*z*(x+y-z) with integers x>=y>=z are the negatives of A213158 and in that case z<0.
Nonnegative integers of the form (a^2-c^2)*(b^2-c^2) with integers a>=b>=c.
Note that we must allow c<0 to represent n=12, 24, 40, ....
The negative integers of the form (a^2-c^2)*(b^2-c^2) with integers a>=b>=c are the negatives of A213158.

Examples

			12 = (1)*(-2)*(-3)*((1)+(-2)-(-3)) with (x,y,z) = (1,-2,-3).
12 = 2*2*1*(2+2-1) with (x,y,z) = (2,2,1).
12 = ((0)^2-(-2)^2)*((-1)^2-(-2)^2) with (a,b,c) = (0,-1,-2).
12 = ((1)^2-(-2)^2)*((0)^2-(-2)^2) with (a,b,c) = (1,0,-2).
		

Crossrefs

Cf. A213158.

Programs

  • PARI
    {isa(n) = forvec( v = vector(3, i, [0, ceil(n^(1/2))]), if( n == v[1] * v[2] * v[3] * (v[3] + v[2] - v[1]), return(1)), 1)}