A225888 Primes p such that neither 2 nor 3 are primitive roots, but together 2 and 3 generate the nonzero residues mod p.
41, 103, 109, 151, 157, 229, 251, 271, 277, 367, 397, 683, 733, 761, 967, 971, 991, 1051, 1069, 1163, 1181, 1289, 1303, 1429, 1471, 1543, 1759, 1783, 1789, 1811, 1879, 2003, 2297, 2411, 2441, 2551, 2749, 2791, 2887, 2917, 3061, 3079, 3109, 3229, 3251, 3301, 3319
Offset: 1
Keywords
Examples
2 has multiplicative order 20 mod 41, 3 has order 8 mod 41 so neither is a primitive root. The subgroup 2 and 3 generate together will have order lcm(20,8) = 40 so 2 and 3 generate all nonzero residues.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
PARI
is(n)=if(n>40 && isprime(n), my(a=znorder(Mod(2,n)),b); if(a==n-1,return(0)); b=znorder(Mod(3,n)); b
Charles R Greathouse IV, May 19 2013