A225908 Numbers that are both a sum and a difference of two positive cubes.
91, 152, 189, 217, 513, 728, 1027, 1216, 1512, 1736, 2457, 3087, 4104, 4706, 4921, 4977, 5103, 5256, 5824, 5859, 6832, 7657, 8216, 8587, 9728, 10712, 11375, 12096, 12691, 13851, 13888, 14911, 15093, 15561, 16120, 16263, 19000, 19656, 21014, 23058, 23625, 24696
Offset: 1
Keywords
Examples
3^3 + 4^3 + 5^3 = 6^3, so 3^3 + 4^3 = 91 and 3^3 + 5^3 = 152 and 4^3 + 5^3 = 189 are members.
References
- Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- David Eugene Smith and Yoshio Mikami, A History of Japanese Mathematics, Open Court, Chicago, 1914; Dover reprint, 2004; pp. 233-235.
- Wikipedia (French), Shiraishi Nagatada
- Wikipedia (German), Shiraishi Nagatada
- Index entries for sequences related to sums of cubes
Programs
-
Mathematica
nn = 3*10^4; t1 = Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]; p = 3; t2 = Union[Reap[Do[n = i^p - j^p; If[n <= nn, Sow[n]], {i, Ceiling[(nn/p)^(1/(p - 1))]}, {j, i}]][[2, 1]]]; Intersection[t1, t2] (* T. D. Noe, Jun 21 2013 *)
Comments