A225909 Numbers that are both a sum of two positive cubes and a difference of two consecutive cubes.
91, 217, 1027, 4921, 8587, 14911, 31519, 39331, 106597, 117019, 136747, 185257, 195841, 265519, 281827, 616987, 636181, 684019, 712969, 724717, 736561, 955981, 1200169, 1352737, 1405621, 1771777, 2481571, 2756167, 2937331, 4251871, 4996171, 5262901
Offset: 1
Keywords
Examples
3^3 + 4^3 = 6^3 - 5^3 = 91, so 91 is a member.
References
- Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..5000
- David Eugene Smith and Yoshio Mikami, A History of Japanese Mathematics, Open Court, Chicago, 1914; Dover reprint, 2004; pp. 233-235.
- Wikipedia (French), Shiraishi Nagatada
- Wikipedia (German), Shiraishi Nagatada
- Index entries for sequences related to sums of cubes
Programs
-
Mathematica
Select[#[[2]]-#[[1]]&/@Partition[Range[5000]^3,2,1],Count[ IntegerPartitions[ #,{2}],?(AllTrue[Surd[#,3],IntegerQ]&)]>0&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Sep 07 2018 *)
Comments