A226903 Shiraishi numbers: a parametrized family of solutions c to the Diophantine equation a^3 + b^3 + c^3 = d^3 with d = c+1.
5, 18, 53, 102, 197, 306, 491, 684, 989, 1290, 1745, 2178, 2813, 3402, 4247, 5016, 6101, 7074, 8429, 9630, 11285, 12738, 14723, 16452, 18797, 20826, 23561, 25914, 29069, 31770, 35375, 38448, 42533, 46002, 50597, 54486, 59621, 63954, 69659, 74460, 80765, 86058
Offset: 1
Examples
The first two terms are a(1) = 9 - 6 + 3 - 1 = 5 and a(2) = 9 + 6 + 3 = 18. Then Shiraishi's formulas give 3^3 + 4^3 + 5^3 = 6^3 and 3^3 + 10^3 + 18^3 = 19^3.
References
- Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.
Links
- David Eugene Smith and Yoshio Mikami, A History of Japanese Mathematics, Open Court, Chicago, 1914; Dover reprint, 2004; pp. 233-235.
- Wikipedia (French), Shiraishi Nagatada
- Wikipedia (German), Shiraishi Nagatada
- Index entries for sequences related to sums of cubes
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Formula
a(2n-1) = 9n^3 - 6n^2 + 3n - 1.
a(2n) = 9n^3 + 6n^2 + 3n.
G.f.: x*(5 + 13*x + 20*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1 + x)^3*(1 - x)^4). [Bruno Berselli, Jun 22 2013]
a(n) = (18*n^3 + 27*n^2 + 27*n + 1 - (3*n^2 + 3*n + 1)*(-1)^n)/16. [Bruno Berselli, Jun 22 2013]
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 7. - Chai Wah Wu, Aug 05 2025
Comments