cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A005448 Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1.

Original entry on oeis.org

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, 3106, 3244, 3385, 3529
Offset: 1

Views

Author

N. J. A. Sloane, R. K. Guy, Dec 12 1974

Keywords

Comments

These are Hogben's central polygonal numbers
2
.P
3 n
Also the sum of three consecutive triangular numbers (A000217); i.e., a(4) = 19 = T4 + T3 + T2 = 10 + 6 + 3. - Robert G. Wilson v, Apr 27 2001
For k>2, Sum_{n=1..k} a(n) gives the sum pertaining to the magic square of order k. E.g., Sum_{n=1..5} a(n) = 1 + 4 + 10 + 19 + 31 = 65. In general, Sum_{n=1..k} a(n) = k*(k^2 + 1)/2. - Amarnath Murthy, Dec 22 2001
Binomial transform of (1,3,3,0,0,0,...). - Paul Barry, Jul 01 2003
a(n) is the difference of two tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-2)(n-1)(n)/6. - Alexander Adamchuk, May 20 2006
Partial sums are A006003(n) = n(n^2+1)/2. Finite differences are a(n+1) - a(n) = A008585(n) = 3n. - Alexander Adamchuk, Jun 03 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-2) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Equals (1, 2, 3, ...) convolved with (1, 2, 3, 3, 3, ...). a(4) = 19 = (1, 2, 3, 4) dot (3, 3, 2, 1) = (3 + 6 + 6 + 4). - Gary W. Adamson, May 01 2009
Equals the triangular numbers convolved with [1, 1, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
a(n) is the number of triples (w,x,y) having all terms in {0,...,n} and min(w+x,x+y,y+w) = max(w,x,y). - Clark Kimberling, Jun 14 2012
a(n) = number of atoms at graph distance <= n from an atom in the graphite or graphene network (cf. A008486). - N. J. A. Sloane, Jan 06 2013
In 1826, Shiraishi gave a solution to the Diophantine equation a^3 + b^3 + c^3 = d^3 with b = a(n) for n > 1; see A226903. - Jonathan Sondow, Jun 22 2013
For n > 1, a(n) is the remainder of n^2 * (n-1)^2 mod (n^2 + (n-1)^2). - J. M. Bergot, Jun 27 2013
The equation A000578(x) - A000578(x-1) = A000217(y) - A000217(y-2) is satisfied by y=a(x). - Bruno Berselli, Feb 19 2014
A242357(a(n)) = n. - Reinhard Zumkeller, May 11 2014
A255437(a(n)) = 1. - Reinhard Zumkeller, Mar 23 2015
The first differences give A008486. a(n) seems to give the total number of triangles in the n-th generation of the six patterns of triangle expansion shown in the link. - Kival Ngaokrajang, Sep 12 2015
Number of binary shuffle squares of length 2n which contains exactly two 1's. - Bartlomiej Pawlik, Sep 07 2023
The digital root has period 3 (1, 4, 1) (A146325), the same digital root as the centered 12-gonal numbers, or centered dodecagonal numbers A003154(n). - Peter M. Chema, Dec 20 2023

Examples

			From _Seiichi Manyama_, Aug 12 2017: (Start)
a(1) = 1:
      *
     / \
    /   \
   /     \
  *-------*
.................................................
a(2) = 4:
            *
           / \
          /   \
         /     \
        *---*---*
           / \
      *   /   \   *
     / \ /     \ / \
    /   *-------*   \
   /     \     /     \
  *-------*   *-------*
.................................................
a(3) = 10:
                  *
                 / \
                /   \
               /     \
              *---*---*
                 / \
            *   /   \   *
           / \ /     \ / \
          /   *---*---*   \
         /     \ / \ /     \
        *---*---*   *---*---*
           / \ /     \ / \
      *   /   *---*---*   \   *
     / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   \
   /     \     /     \     /     \
  *-------*   *-------*   *-------*
.................................................
a(4) = 19:
                        *
                       / \
                      /   \
                     /     \
                    *---*---*
                       / \
                  *   /   \   *
                 / \ /     \ / \
                /   *---*---*   \
               /     \ / \ /     \
              *---*---*   *---*---*
                 / \ /     \ / \
            *   /   \---*---*   \   *
           / \ /     \ / \ /     \ / \
          /   *---*---*   *---*---*   \
         /     \ / \ /     \ / \ /     \
        *---*---*   *---*---*   *---*---*
           / \ /     \ / \ /     \ / \
      *   /   *---*---*   *---*---*   \   *
     / \ /     \ / \ /     \ / \ /     \ / \
    /   *-------*   *-------*   *-------*   \
   /     \     /     \     /     \     /     \
  *-------*   *-------*   *-------*   *-------*
(End)
		

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005448 n = 3 * n * (n - 1) `div` 2 + 1
    a005448_list = 1 : zipWith (+) a005448_list [3, 6 ..]
    -- Reinhard Zumkeller, Jun 20 2013
    
  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
  • Maple
    A005448 := n->(3*(n-1)^2+3*(n-1)+2)/2: seq(A005448(n), n=1..100);
    A005448 := -(1+z+z**2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation for offset 0
  • Mathematica
    FoldList[#1 + #2 &, 1, 3 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Join[{1,4},Total/@Partition[Accumulate[Range[50]],3,1]] (* Harvey P. Dale, Aug 17 2012 *)
    LinearRecurrence[{3, -3, 1}, {1, 4, 10}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 3 x^2/2)-1, {x, 0, 20}], x, j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
    3#+1&/@Accumulate[Range[0,50]] (* Harvey P. Dale, Nov 20 2024 *)
  • PARI
    {a(n)=3*(n^2-n)/2+1} /* Michael Somos, Sep 23 2006 */
    
  • PARI
    isok(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); \\ Michel Marcus, May 20 2020
    

Formula

Expansion of x*(1-x^3)/(1-x)^4.
a(n) = C(n+3, 3)-C(n, 3) = C(n, 0)+3*C(n, 1)+3*C(n, 2). - Paul Barry, Jul 01 2003
a(n) = 1 + Sum_{j=0..n-1} (3*j). - Xavier Acloque, Oct 25 2003
a(n) = A000217(n) + A000290(n-1) = (3*A016754(n) + 5)/8. - Lekraj Beedassy, Nov 05 2005
Euler transform of length 3 sequence [4, 0, -1]. - Michael Somos, Sep 23 2006
a(1-n) = a(n). - Michael Somos, Sep 23 2006
a(n) = binomial(n+1,n-1) + binomial(n,n-2) + binomial(n-1,n-3). - Zerinvary Lajos, Sep 03 2006
Row sums of triangle A134482. - Gary W. Adamson, Oct 27 2007
Narayana transform (A001263) * [1, 3, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=4, a(3)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A000217(n-1)*3 + 1 = A045943(n-1) + 1. - Omar E. Pol, Dec 27 2008
a(n) = a(n-1) + 3*n-3. - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = A306324. - Ant King, Jun 12 2012
a(n) = 2*a(n-1) - a(n-2) + 3. - Ant King, Jun 12 2012
a(n) = A101321(3,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: -1 + (2 + 3*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = A002061(n) + A000217(n-1). - Bruce J. Nicholson, Apr 20 2017
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 5*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 5/(2*e) - 1. (End)
a(n) = A000326(n) - n + 1. - Charlie Marion, Nov 21 2020

A023042 Numbers whose cube is the sum of three distinct nonnegative cubes.

Original entry on oeis.org

6, 9, 12, 18, 19, 20, 24, 25, 27, 28, 29, 30, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 53, 54, 56, 57, 58, 60, 63, 66, 67, 69, 70, 71, 72, 75, 76, 78, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 108, 110, 111, 112, 113
Offset: 1

Views

Author

Keywords

Comments

Numbers w such that w^3 = x^3+y^3+z^3, x>y>z>=0, is soluble.
A226903(n) + 1 is an infinite subsequence parametrized by Shiraishi in 1826. - Jonathan Sondow, Jun 22 2013
Because of Fermat's Last Theorem, sequence lists numbers w such that w^3 = x^3+y^3+z^3, x>y>z>0, is soluble. In other words, z cannot be 0 because x and y are positive integers by definition of this sequence. - Altug Alkan, May 08 2016
This sequence is the same as numbers w such that w^3 = x^3+y^3+z^3, x>=y>=z>0, is soluble as Legendre showed that a^3+b^3=2*c^3 only has the trivial solutions a = b or a = -b (see Dickson's History of the Theory of Numbers, vol. II, p. 573). - Chai Wah Wu, May 13 2017

Examples

			20 belongs to the sequence as 20^3 = 7^3 + 14^3 + 17^3.
		

References

  • Ya. I. Perelman, Algebra can be fun, pp. 142-143.

Crossrefs

Programs

  • Maple
    for w from 1 to 113 do for z from 0 to w-1 do bk:=0: for y from z+1 to w-1 do for x from y+((w+z) mod 2) to w-1 by 2 do if(x^3+y^3+z^3=w^3)then printf("%d, ",w); bk:=1: break: fi: od: if(bk=1)then break: fi: od: if(bk=1)then break: fi: od: od: # Nathaniel Johnston, Jun 22 2013
  • Mathematica
    Select[Range[200], n |-> Length[PowersRepresentations[n^3, 3, 3]] > 1] (* Paul C Abbott, May 07 2025 *)
  • PARI
    has(n)=my(L=sqrtnint(n-1,3)+1, U=sqrtnint(4*n,3)); fordiv(n,m, if(L<=m && m<=U, my(ell=(m^2-n/m)/3); if(denominator(ell)==1 && issquare(m^2-4*ell), return(1)))); 0
    list(lim)=my(v=List(),a3,t); lim\=1; for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim, sqrtnint(a3-lim-1,3)+1,1), a-1, t=a3-b^3; if(has(t), listput(v,a)))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018

A225908 Numbers that are both a sum and a difference of two positive cubes.

Original entry on oeis.org

91, 152, 189, 217, 513, 728, 1027, 1216, 1512, 1736, 2457, 3087, 4104, 4706, 4921, 4977, 5103, 5256, 5824, 5859, 6832, 7657, 8216, 8587, 9728, 10712, 11375, 12096, 12691, 13851, 13888, 14911, 15093, 15561, 16120, 16263, 19000, 19656, 21014, 23058, 23625, 24696
Offset: 1

Views

Author

Jonathan Sondow, Jun 21 2013

Keywords

Comments

Solutions x to the equations x = a^3 + b^3 = c^3 - d^3 in positive integers.
The intersection of A003325 and A181123. See those sequences for additional comments, references, links and cross-refs.
Suggested by Shiraishi's solutions to Gokai Ampon's equation u^3 + v^3 + w^3 = n^3 (transpose a term from the left side to the right side). See A023042 and A226903.
An infinite subsequence is (A226904(n)+1)^3 - A226904(n)^3.

Examples

			3^3 + 4^3 + 5^3 = 6^3, so 3^3 + 4^3 = 91 and 3^3 + 5^3 = 152 and 4^3 + 5^3 = 189 are members.
		

References

  • Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.

Crossrefs

Programs

  • Mathematica
    nn = 3*10^4; t1 = Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]; p = 3; t2 = Union[Reap[Do[n = i^p - j^p; If[n <= nn, Sow[n]], {i, Ceiling[(nn/p)^(1/(p - 1))]}, {j, i}]][[2, 1]]]; Intersection[t1, t2] (* T. D. Noe, Jun 21 2013 *)

A226902 Numbers c such that the difference of consecutive cubes (c+1)^3 - c^3 is the sum of two positive cubes.

Original entry on oeis.org

5, 8, 18, 40, 53, 70, 102, 114, 188, 197, 213, 248, 255, 297, 306, 453, 460, 477, 487, 491, 495, 564, 632, 671, 684, 768, 909, 958, 989, 1190, 1290, 1324, 1331, 1346, 1744, 1745, 1779, 2068, 2130, 2178, 2208, 2262, 2448, 2790, 2813, 3320, 3327, 3402, 3414
Offset: 1

Views

Author

Jonathan Sondow, Jun 21 2013

Keywords

Comments

The numbers c in A225909.
The sequence is infinite, because A226903 is a parametrized infinite subsequence.

Examples

			(5+1)^3 - 5^3 = 3^3 + 4^3, so 5 is a member.
		

Crossrefs

Formula

a(n) = (-3 + sqrt(9 + 12*(A225909(n) - 1)))/6

A225909 Numbers that are both a sum of two positive cubes and a difference of two consecutive cubes.

Original entry on oeis.org

91, 217, 1027, 4921, 8587, 14911, 31519, 39331, 106597, 117019, 136747, 185257, 195841, 265519, 281827, 616987, 636181, 684019, 712969, 724717, 736561, 955981, 1200169, 1352737, 1405621, 1771777, 2481571, 2756167, 2937331, 4251871, 4996171, 5262901
Offset: 1

Views

Author

Jonathan Sondow, Jun 21 2013

Keywords

Comments

Solutions x to the equations x = a^3 + b^3 = (c+1)^3 - c^3 in positive integers. The values of c are A226902.
The intersection of A003325 and A003215.
Subsequence of A225908 = numbers that are both a sum and a difference of two positive cubes.
Shiraishi's solution to Gokai Ampon's equation u^3 + v^3 + w^3 = n^3 (see A023042 and A226903) shows that the sequence is infinite.

Examples

			3^3 + 4^3 = 6^3 - 5^3 = 91, so 91 is a member.
		

References

  • Shiraishi Chochu (aka Shiraishi Nagatada), Shamei Sampu (Sacred Mathematics), 1826.

Crossrefs

Programs

Formula

a(n) = (A226902(n)+1)^3 - A226902(n)^3.

A226904 Solutions c to the Diophantine equation a^3 + b^3 + c^3 = (c+1)^3 that are not Shiraishi numbers.

Original entry on oeis.org

8, 40, 70, 114, 188, 213, 248, 255, 297, 453, 460, 477, 487, 495, 564, 632, 671, 768, 909, 958, 1190, 1324, 1331, 1346, 1744, 1779, 2068, 2130, 2208, 2262, 2448, 2790, 3320, 3327, 3414, 3466, 3764, 3866, 3973, 4154, 4193, 4378, 4473, 4583, 4645, 5033, 5175
Offset: 1

Views

Author

Jonathan Sondow, Jun 22 2013

Keywords

Comments

Complement of A226903 in A226902.

Crossrefs

A338932 Numbers k such that the Diophantine equation x^3 + y^3 + z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

1, 2, 128, 729, 1458, 4096, 65536, 93312, 2985984, 3906250, 16777216, 28697814, 33554432, 47775744, 80707214, 244140625, 250000000, 387420489, 1836660096, 2847656250, 4715895382, 5165261696, 12230590464, 13841287201, 17179869184, 21208998746, 24461180928
Offset: 1

Views

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^3 - 6*t^3)^3 + (a^3 + 6*t^3)^3 + (-6*a*t^2)^3 = 2*a^9;
(4*a^3 - 3*t^3)^3 + (4*a^3 + 3*t^3)^3 + (-6*a*t^2)^3 = 128*a^9 = 2*4^3*a^9;
(9*a^3 - 2*t^3)^3 + (9*a^3 + 2*t^3)^3 + (-6*a*t^2)^3 = 1458*a^9 = 2*9^3*a^9;
(36*a^3 - t^3)^3 + (36*a^3 + t^3)^3 + (-6*a*t^2)^3 = 93312*a^9 = 2*36^3*a^9;
((3*a^3)*t - 9*t^4)^3 + (9*t^4)^3 + (a^4 - 9*a*t^3)^3 = a^12;
((9*a^3)*t - t^4)^3 + (t^4)^3 + (9*a^4 - 3*a*t^3)^3 = 729*a^12 = 9^3*a^12.

Examples

			128 is a term, because (4 - 3*(2*n - 1)^3, 4 + 3*(2*n - 1)^3, -3*(2*n - 1)^2) is a nontrivial primitive parametric solution of x^3 + y^3 + z^3 = 128.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = 2*{1, 5, 7, 11, 13}^9;
    t2 = 128*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*{1, 3, 5, 7, 9}^9;
    t4 = 93312*{1, 2, 3, 4, 5}^9;
    t5 = {1, 2, 4, 5, 7}^12;
    t6 = 729*{1, 2, 3, 4, 5}^12;
    Take[Union[t1, t2, t3, t4, t5, t6], 27]

A338933 Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

2, 16, 128, 1024, 1458, 8192, 11664, 31250, 65536, 93312, 235298, 524288, 746496, 1062882, 2000000, 3543122, 3906250, 5971968, 9653618, 15059072, 22781250, 28697814, 33554432, 47775744, 48275138, 68024448, 80707214, 94091762, 128000000, 171532242, 226759808
Offset: 1

Views

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^2 - a*t - t^2)^3 + (a^2 + a*t - t^2)^3 + 2*(t^2)^3 = 2*a^6
(a^3 - 3*t^3)^3 + (a^3 + 3*t^3) + 2*(-3*a*t^2)^3 = 2*a^9;
(9*a^3 - t^3)^3 + (9*a^3 + t^3)^3 + 2*(-3*a*t^2)^3 = 1458*a^9;
(6*a^3*t - 72*t^4)^3 + (72*t^4)^3 + 2*(a^4 - 36*a*t^3)^3 = 2*a^12;
(6*a^3*t - 9*t^4)^3 + (9*t^4)^3 + 2*(2*a^4 - 9*a*t^3)^3 = 16*a^12 = 2*2^3*a^12;
(18*a^3*t - 8*t^4)^3 + (8*t^4)^3 + 2*(9*a^4 - 12*a*t^3)^3 = 1458*a^12 = 2*9^3*a^12;
(18*a^3*t - t^4)^3 + (t^4)^3 + 2*(18*a^4 - 3*a*t^3)^3 = 11664*a^12 = 2*18^3*a^12.

Examples

			16 is a term, because when t is an integer, (6*(2*t + 1) - 9*(2*t + 1)^4, 9*(2*t + 1)^4, 2 - 9*(2*t + 1)^3) is a nontrivial primitive parametric solution of x^3 + y^3 + 2*z^3 = 16.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = 2*Range[23]^6;
    t2 = 2*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*Range[4]^9;
    t4 = 2*{1, 5}^12;
    t5 = 16*{1, 2, 4}^12;
    t6 = 1458*{1, 3}^12;
    t7 = 11664*{1, 2, 3}^12;
    Take[Union[t1, t2, t3, t4, t5, t6, t7], 31]

Extensions

Missing terms 1024 and 746496 added by XU Pingya, Mar 14 2022

A377739 Array of positive integer triples (x,y,z) where the sum of their cubes equals another cubic number.

Original entry on oeis.org

3, 4, 5, 1, 6, 8, 6, 8, 10, 2, 12, 16, 9, 12, 15, 3, 10, 18, 7, 14, 17, 12, 16, 20, 4, 17, 22, 3, 18, 24, 18, 19, 21, 11, 15, 27, 15, 20, 25, 4, 24, 32, 18, 24, 30, 6, 20, 36, 14, 28, 34, 2, 17, 40, 6, 32, 33, 21, 28, 35, 16, 23, 41, 5, 30, 40, 3, 36, 37, 27, 30, 37, 24, 32, 40, 8, 34, 44, 29, 34, 44, 6, 36, 48, 12, 19, 53, 27, 36, 45, 36, 38, 42
Offset: 1

Views

Author

Luke Voyles, Nov 05 2024

Keywords

Comments

The Shiraishi theorem demonstrated that there were an infinite number of cubic number triples whose sum equaled a cubic number (A226903). Through an analysis of the cubic number triples found by Russell and Gwyther, another way to prove that there are an infinite number of cubic number triples who sum equals a cubic number appeared. For any triple, one can add a zero to the end of the three numbers. The new three numbers will also equal a cubic number. For example, 3^3+4^3+5^3=6^3 can be transformed into 30^3+40^3+50^3=60^3. The number of zeros that are consistently applied to each of the numbers who cubic numbers will always create new cubic numbers. For example, 30^3+40^3+50^3=60^3 can become 300^3+400^3+500^3=600^3 and 3000^3+4000^3+5000^3=6000^3, and so on. Through experiments, the formula holds true for Pythagorean triples and Pythagorean quadruples as well. To apply the method to Pythagorean triples, 3^2+4^2=5^2 can be transformed into 30^2+40^2=50^2, 300^2+400^2=500^2, and so on. For Pythagorean quadruples, 3^2+4^2+12^2=13^2 can be transformed into 30^2+40^2+120^2=130^2 and then to 300^2+400^2+1200^2=1300^2. The property holds even beyond the second and third powers. For example, 3530^4=300^4+1200^4+2720^4+3150^4 just as 353^4=30^4+120^4+272^4+315^4. Additionally, 1440^5=270^5+840^5+1100^5+1330^5 just as 144^5=27^5+84^5+110^5+133^5. Once one set is found, it appears there can be an infinite number of similar sets for any power through this method.
The list of Russell and Gwyther also reveals that the cube of 38 can be represented as the sum of the cubes of nine unique positive integers. This is because 38^3=3^3+4^3+5^3+7^3+14^3+17^3+18^3+24^3+30^3.

Examples

			3^3+4^3+5^3=6^3
1^3+6^3+8^3=9^3
6^3+8^3+10^3=12^3
2^3+12^3+16^3=18^3
9^3+12^3+15^3=18^3
		

Crossrefs

The sum of each cubic number triple produce the sequence A023042. The comments produce another method to produce an infinite number of cubic number triples whose sum equals a cube that the method shown by Shiraishi according to A226903. The comments discuss qualities of Pythagorean triples A103606 and Pythagorean quadruples A096907. The title's structure drew inspiration from A291694.

Formula

If a^3+b^3+c^3=d^3, then any specific number k that has a zero as the last digit will make k(d^3) another cubic number through the formula k(a^3)+k(b^3)+k(c^3)=k(d^3)
Showing 1-9 of 9 results.