A377739 Array of positive integer triples (x,y,z) where the sum of their cubes equals another cubic number.
3, 4, 5, 1, 6, 8, 6, 8, 10, 2, 12, 16, 9, 12, 15, 3, 10, 18, 7, 14, 17, 12, 16, 20, 4, 17, 22, 3, 18, 24, 18, 19, 21, 11, 15, 27, 15, 20, 25, 4, 24, 32, 18, 24, 30, 6, 20, 36, 14, 28, 34, 2, 17, 40, 6, 32, 33, 21, 28, 35, 16, 23, 41, 5, 30, 40, 3, 36, 37, 27, 30, 37, 24, 32, 40, 8, 34, 44, 29, 34, 44, 6, 36, 48, 12, 19, 53, 27, 36, 45, 36, 38, 42
Offset: 1
Keywords
Examples
3^3+4^3+5^3=6^3 1^3+6^3+8^3=9^3 6^3+8^3+10^3=12^3 2^3+12^3+16^3=18^3 9^3+12^3+15^3=18^3
Links
- A. Russell and C. E. Gwyther, The Partition of Cubes, The Mathematical Gazette, Vol. 21, No. 242 (Feb., 1937), pp. 33-35 (3 pages).
Crossrefs
The sum of each cubic number triple produce the sequence A023042. The comments produce another method to produce an infinite number of cubic number triples whose sum equals a cube that the method shown by Shiraishi according to A226903. The comments discuss qualities of Pythagorean triples A103606 and Pythagorean quadruples A096907. The title's structure drew inspiration from A291694.
Formula
If a^3+b^3+c^3=d^3, then any specific number k that has a zero as the last digit will make k(d^3) another cubic number through the formula k(a^3)+k(b^3)+k(c^3)=k(d^3)
Comments