A225910 Square array read by antidiagonals: a(m,n) is the number of binary pattern classes in the (m,n)-rectangular grid, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 7, 6, 1, 1, 10, 24, 24, 10, 1, 1, 20, 76, 168, 76, 20, 1, 1, 36, 288, 1120, 1120, 288, 36, 1, 1, 72, 1072, 8640, 16576, 8640, 1072, 72, 1, 1, 136, 4224, 66816, 263680, 263680, 66816, 4224, 136, 1, 1, 272, 16576, 529920, 4197376, 8407040, 4197376, 529920, 16576, 272, 1
Offset: 0
Examples
Array begins: 1 1 1 1 1 1 1 ... 1 2 3 6 10 20 36 ... 1 3 7 24 76 288 1072 ... 1 6 24 168 1120 8640 66816 ... 1 10 76 1120 16576 263680 4197376 ... 1 20 288 8640 263680 8407040 268517376 ... 1 36 1072 66816 4197376 268517376 17180065792 ... 1 72 4224 529920 67133440 8590786560 1099516870656 ... 1 136 16576 4212736 1073790976 274882625536 70368756760576 ... 1 272 66048 33632256 17180262400 8796137062400 4503599962914816 ... 1 528 262912 268713984 274878693376 281475261923328 288230376957018112 ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..65, flattened
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
Formula
m even and n even:
a(m,n) = 2^(m*n/2-2)*(2^(m*n/2) + 3);
m even and n odd:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(m/2-1) + 1);
m odd and n even:
a(m,n) = 2^(m*n/2-1)*(2^(m*n/2-1) + 2^(n/2-1) + 1);
m odd and n odd:
a(m,n) = 2^((m*n-1)/2-1)*(2^((m*n-1)/2) + 2^((m-1)/2) + 2^((n-1)/2) + 1).
m even:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
m odd:
a(m,n) = 2^m*a(m,n-1) + 2^m*a(m,n-2) - (2^m)^2*a(m,n-3) - 2^(((m+1)/2)*n-3)*(2^((m-1)/2)-1) with n>2, a(m,0)=1, a(m,1)=a(1,m), a(m,2)=a(2,m).
Comments