cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002292 Related to representation as sums of squares.

Original entry on oeis.org

1, 20, 74, 24, 157, 124, 478, 1480, 1198, 3044, 480, 184, 2351, 1720, 3282, 5728, 2480, 1776, 10326, 9560, 8886, 9188, 11618, 23664, 16231, 23960, 11686, 9176, 60880, 16876, 18482, 3768, 35372, 15532, 3680, 31960, 4886, 47020, 2976, 44560
Offset: 0

Views

Author

Keywords

Comments

This is A225923 without the minus signs. - Michael Somos, Aug 09 2018

References

  • J. W. L. Glaisher, On the representation of a number as sum of 2,4,6,8... squares, Quart. J. Math. 38 (1907), 1-62 (see p. 56).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A225923.

Formula

a(n) = abs(A225923(n)). - Michael Somos, Aug 09 2018

A225912 Expansion of q * (phi(-q^2) * psi(-q)^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, -8, 20, 0, -74, 96, -24, 0, 157, -432, 124, 0, 478, 704, -1480, 0, -1198, 792, 3044, 0, -480, -4320, 184, 0, 2351, 3344, -1720, 0, -3282, 5184, -5728, 0, 2480, -4752, 1776, 0, 10326, -6688, 9560, 0, -8886, -8448, -9188, 0, -11618, 32832, 23664, 0, -16231
Offset: 0

Views

Author

Michael Somos, May 20 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 8*q^2 + 20*q^3 - 74*q^5 + 96*q^6 - 24*q^7 + 157*q^9 - 432*q^10 + ...
		

Crossrefs

Cf. A225923 (bisection?)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ -(EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, I q^(1/2)]^2 / 4 )^4, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^4])^4, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A))^4, n))};

Formula

Expansion of (eta(q)^2 * eta(q^4))^4 in powers of q.
Euler transform of period 4 sequence [-8, -8, -8, -12, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^14 (t/i)^6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225872.
G.f.: x * (Product_{k>0} (1 - x^k)^2 * (1 - x^(4*k)))^4.
Showing 1-2 of 2 results.