A225930 Number of conjugacy classes in twisted Chevalley group 3D4(q) as q runs through the prime powers.
35, 126, 345, 786, 2806, 4685, 7386, 16110, 30946, 69909, 88746, 137566, 292566, 406906, 551886, 732546, 954310, 1082405, 1926226, 2896410, 3500206, 4985766, 5884906, 8042226, 12326286, 14076610, 17043525, 20456446, 25774710, 28792666, 39449446, 43584810, 48037086
Offset: 1
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Eric M. Schmidt)
- Frank Luebeck, Numbers of Conjugacy Classes in Finite Groups of Lie Type.
Programs
-
Mathematica
Map[(#^2 + 1)*(# + 1)*# + 5 + Mod[#, 2] &, Select[Range[100], PrimePowerQ]] (* Paolo Xausa, Jan 16 2025 *)
-
PARI
apply(x->(x^4 + x^3 + x^2 + x + 5 + (x%2)), select(isprimepower, [1..100])) \\ Michel Marcus, Jan 16 2025
Formula
Let q be the n-th prime power. Then, a(n) = q^4 + q^3 + q^2 + q + c, where c = 5 if q is even and c = 6 if q is odd.