A260957
Coefficients in asymptotic expansion of sequence A225960.
Original entry on oeis.org
1, -1, 0, 2, 11, 97, 1105, 13905, 189633, 2803873, 44875599, 774931369, 14385283720, 286010393240, 6069158797378, 137001560841500, 3279733485742038, 83029219746406610, 2216965307395350215, 62282348739259200015, 1836840301301564071196, 56750954571528670989664
Offset: 0
A225960(n)/(2*(n-1)!) ~ 1 - 1/n + 2/n^3 + 11/n^4 + 97/n^5 + 1105/n^6 + ...
A186373
Triangle read by rows: T(n,k) is the number of permutations of [n] having k strong fixed blocks (see first comment for definition).
Original entry on oeis.org
1, 0, 1, 1, 1, 3, 3, 14, 9, 1, 77, 38, 5, 497, 198, 25, 3676, 1229, 134, 1, 30677, 8819, 815, 9, 285335, 71825, 5657, 63, 2928846, 654985, 44549, 419, 1, 32903721, 6615932, 394266, 2868, 13, 401739797, 73357572, 3883182, 20932, 117, 5298600772, 886078937, 42174500, 165662, 928, 1
Offset: 0
T(3,1) = 3 because we have [123], [1]32, and 21[3] (the strong fixed blocks are shown between square brackets).
T(7,3) = 1 because we have [1]32[4]65[7] (the strong fixed blocks are shown between square brackets).
Triangle starts:
1;
0, 1;
1, 1;
3, 3;
14, 9, 1;
77, 38, 5;
497, 198, 25;
3676, 1229, 134, 1;
30677, 8819, 815, 9;
285335, 71825, 5657, 63;
2928846, 654985, 44549, 419, 1;
Columns k=0-10 give:
A052186,
A225960,
A225963,
A225964,
A225965,
A225966,
A225967,
A225968,
A225969,
A225970,
A225971. -
Alois P. Heinz, May 22 2013
-
b:= proc(n) b(n):=-`if`(n<0, 1, add(b(n-i-1)*i!, i=0..n)) end:
f:= proc(n) f(n):=`if`(n<=0, 0, b(n-1)+f(n-1)) end:
B:= proc(n, k) option remember; `if`(k=0, 0, `if`(k=1, f(n),
add((f(n-i)-1)*B(i,k-1), i=3*k-5..n-3)))
end:
T:= proc(n, k) option remember; `if`(k=0, b(n),
add(b(n-i)*B(i, k), i=3*k-2..n))
end:
seq(seq(T(n, k), k=0..ceil(n/3)), n=0..20); # Alois P. Heinz, May 23 2013
-
b[n_] := b[n] = -If[n<0, 1, Sum[b[n-i-1]*i!, {i, 0, n}]]; f[n_] := f[n] = If[n <= 0, 0, b[n-1] + f[n-1]]; B[n_, k_] := B[n, k] = If[k == 0, 0, If[k == 1, f[n], Sum[(f[n-i]-1)*B[i, k-1], {i, 3*k-5, n-3}]]]; T[n_, k_] := T[n, k] = If[k == 0, b[n], Sum[b[n-i]*B[i, k], {i, 3*k-2, n}]]; Table[Table[T[n, k], {k, 0, Ceiling[ n/3]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
Showing 1-2 of 2 results.
Comments