cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226019 Primes whose binary reversal is a square.

Original entry on oeis.org

2, 19, 79, 149, 569, 587, 1237, 2129, 2153, 2237, 2459, 2549, 4129, 4591, 4657, 4999, 8369, 8999, 9587, 9629, 9857, 10061, 17401, 17659, 17737, 18691, 20149, 20479, 33161, 33347, 34631, 35117, 35447, 39023, 40427, 40709, 66403, 68539, 74707, 75703, 79063, 79333, 80071
Offset: 1

Views

Author

Alex Ratushnyak, May 23 2013

Keywords

Comments

The sequence of corresponding squares begins: 1, 25, 121, 169, 625, 841, 1369, 2209, 2401, 3025, 3481, 2809, 4225, 7921, ...
For n>1 the second and third most significant bits of a(n) are "0" because all odd squares are equal to 1 mod 8. - Andres Cicuttin, May 12 2016

Crossrefs

Subsequence of A204219. Cf. also A235027.

Programs

  • Mathematica
    Select[Table[Prime[j],{j,1,10000}],Element[Sqrt[FromDigits[Reverse[IntegerDigits[#,2]],2]],Integers]&] (* Andres Cicuttin, May 12 2016 *)
  • PARI
    isok(k) = isprime(k) && issquare(fromdigits(Vecrev(binary(k)), 2)); \\ Michel Marcus, Feb 19 2021
  • Python
    import math
    primes = []
    def addPrime(k):
      for p in primes:
        if k%p==0:  return
        if p*p > k:  break
      primes.append(k)
      r = 0
      p = k
      while k:
        r = r*2 + (k&1)
        k>>=1
      s = int(math.sqrt(r))
      if s*s == r:  print(p, end=', ')
    addPrime(2)
    addPrime(3)
    for i in range(5, 1000000000, 6):
      addPrime(i)
      addPrime(i+2)
    
  • Python
    from sympy import isprime
    A226019_list, i, j = [2], 0, 0
    while j < 2**34:
        p = int(format(j,'b')[::-1],2)
        if j % 2 and isprime(p):
            A226019_list.append(p)
        j += 2*i+1
        i += 1
    A226019_list = sorted(A226019_list) # Chai Wah Wu, Dec 20 2015
    
  • Python
    from sympy import integer_nthroot, primerange
    def ok(p): return integer_nthroot(int(bin(p)[:1:-1], 2), 2)[1]
    def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
    print(aupto(80071)) # Michael S. Branicky, Feb 19 2021