A226026 Maximum fixed points under iteration of sum of cubes of digits in base n.
1, 17, 62, 118, 251, 250, 433, 1052, 407, 1280, 2002, 1968, 793, 3052, 5614, 1456, 5337, 5939, 2413, 5615, 20217, 11648, 11080, 31024, 5425, 1737, 28027, 26846, 17451, 33535, 10261, 64019, 23552, 44937, 30086, 84870, 17353, 55243, 48824, 108936, 58618, 87977
Offset: 2
Examples
In base 5, the numbers 1, 28 and 118 are written as 1, 103, and 433. The sum of the cubes of their digits are 1, 1+0^3+3^3=28, and 4^3+3^3+3^3=118. There are no other solutions, so a(5)=118.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 2..1000
- Christian N. K. Anderson, Table of base, maximum fixed point, number of fixed points, and all fixed points for base 2 to 1000.
Crossrefs
Programs
-
R
inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) } yfp=vector("list",100) for(b in 2:100) { fp=c() for(w in 0:1) for(x in 1:b-1) for(y in 1:b-1) if((u1=w^3+x^3+y^3)<=(u2=w*b^3+x*b^2+y*b) & u1+b^3>u2+b-1) if(length((z=which((1:b-1)*((1:b-1)^2-1)==u2-u1)-1))) fp=c(fp,u2+z) yfp[[b]]=fp[-1] cat("Base",b,":",fp,"\n") }
Comments