A226038 Numbers k such that there are no primes p which divide k+1 and p-1 does not divide k.
0, 1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 22, 24, 26, 28, 30, 31, 36, 40, 42, 44, 46, 48, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 88, 96, 100, 102, 106, 108, 112, 120, 124, 126, 127, 130, 136, 138, 148, 150, 156, 162, 166, 168, 172, 178, 180, 190, 192, 196, 198
Offset: 1
Examples
A counterexample is n = 14. 5 divides 15 but 4 does not divide 14.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Peter Luschny, Generalized Bernoulli numbers.
Programs
-
Maple
s := (p,n) -> ((n+1) mod p = 0) and (n mod (p-1) <> 0); F := n -> select(p -> s(p,n), select('isprime', [$2..n])); A226038_list := n -> select(k -> [] = F(k), [$0..n]); A226038_list(200);
-
Mathematica
s[p_, n_] := Mod[n+1, p] == 0 && Mod[n, p-1] != 0; f[n_] := Select[ Select[ Range[n], PrimeQ], s[#, n] &]; A226038 = Select[ Range[0, 200], f[#] == {} &] (* Jean-François Alcover, Jul 29 2013, after Maple *) Join[{0}, Select[Range[200], And @@ Divisible[#, FactorInteger[# + 1][[All, 1]] - 1] &]] (* Ivan Neretin, Aug 04 2016 *)
-
Sage
def F(n): return filter(lambda p: ((n+1) % p == 0) and (n % (p-1) != 0), primes(n)) def A226038_list(n): return list(filter(lambda n: not list(F(n)), (0..n))) A226038_list(200)
Comments