A226075 Expansion of (eta(q) * eta(q^11))^2 + 2 * (eta(q^2) * eta(q^22))^2 in powers of q.
1, 0, -1, -2, 1, 0, -2, 4, -2, 0, 1, 2, 4, 0, -1, -4, -2, 0, 0, -2, 2, 0, -1, -4, -4, 0, 5, 4, 0, 0, 7, 0, -1, 0, -2, 4, 3, 0, -4, 4, -8, 0, -6, -2, -2, 0, 8, 4, -3, 0, 2, -8, -6, 0, 1, -8, 0, 0, 5, 2, 12, 0, 4, 8, 4, 0, -7, 4, 1, 0, -3, -8, 4, 0, 4, 0, -2, 0
Offset: 1
Examples
G.f. = q - q^3 - 2*q^4 + q^5 - 2*q^7 + 4*q^8 - 2*q^9 + q^11 + 2*q^12 + 4*q^13 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
Programs
-
Magma
Basis( CuspForms( Gamma0(22), 2), 79)[1];
-
Mathematica
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^11])^2 + 2 q^2 ( QPochhammer[ q^2] QPochhammer[ q^22])^2, {q, 0, n}]; (* Michael Somos, Apr 25 2015 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2 + 2 * x * (eta(x^2 + A) * eta(x^22 + A))^2, n))};
-
Sage
CuspForms( Gamma0(22), 2, prec=79).0;